

CARACTERISATION DU DIGESTAT : RESULTATS D'ESSAIS PLEIN CHAMPS

Expo Biogaz 20 février 2013

SOMMAIRE

1/ Methaneo, qui sommes-nous?

2/ La Méthanisation collective, territoriale et agricole

3/ Contexte des essais : de la théorie à la réalité

4/ Essai technique : devenir de la matière organique

5/ Essai plein champs : fertilisation azotée

6/ Conclusion

Methaneo, qui sommes nous?

Historique

- Création en septembre 2007, en tant que développeur de projets
- Levée de fonds, 3M€ en octobre 2008, auprès de :
 - ◆ CAPENERGIE, le fond « Energies Renouvelables » du Crédit Agricole
 - ▶ DEMETER, le fond « clean-tech » sponsorisé par la Caisse des Dépôts
- Aujourd'hui, 12 collaborateurs
 - 9 à Paris
 - 3 en province
 - plus 5 développeurs locaux

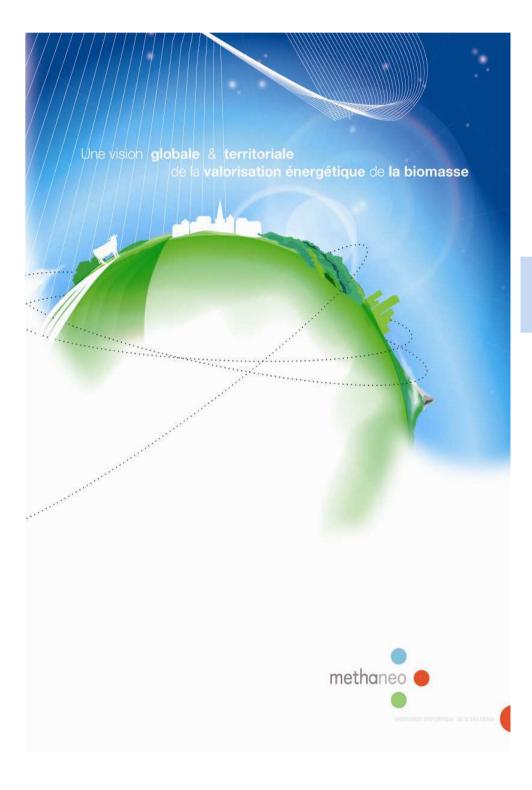
Methaneo, qui sommes nous?

Séchilienne-SIDEC

- Rachat des actions détenues par CAPE (Crédit Agricole) et Demeter Partners
- ETI de 300 salariés localisée en majorité dans les DOM pour l'exploitation des sites
- Métiers :
 - roducteur indépendant d'énergie dans les DOM : bagasse, charbon
 - producteur d'énergie solaire (principalement DOM)
- Stratégie de recentrage :
 - producteur indépendant d'énergie renouvelable à partir de biomasse
- Relais de croissance :
 - Méthanisation (Methaneo)
 - Biomasse bois
 - Brésil (bagasse)

PHOTOVOLTAIQUE

ÉOLIEN


THERMIQUE

Methaneo, qui sommes nous?

Nos métiers

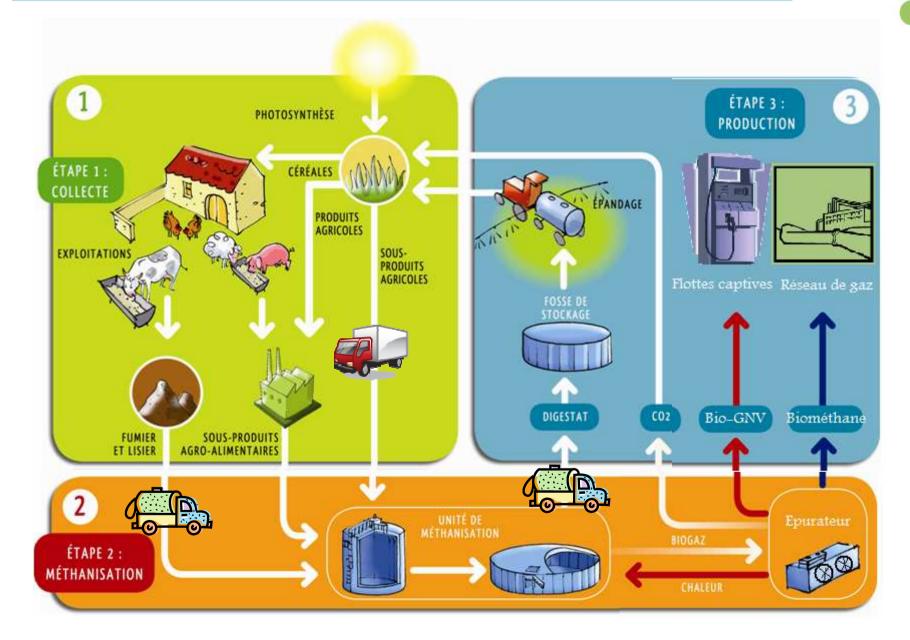
- A terme : Producteur d'énergie (électricité, chaleur et gaz) et de matières fertilisantes (digestats, compost, engrais)
- Développeur : nous nous sommes spécialisés dans le développement de projets de Méthanisation Collectifs, Territoriaux et Agricoles
- Investisseur : nous nous engageons en finançant les projets, dont nous devenons généralement l'actionnaire de référence
 - Une vingtaine de projets en cours de développement à ce jour :
 - dont 2 financés et en cours de construction
 - dont 3 autorisés et en cours de financement
 - dont 4 en cours d'autorisation

SOMMAIRE

1/ Methaneo, qui sommes-nous?

2/ La Méthanisation collective, territoriale et agricole

3/ Contexte des essais : de la théorie à la réalité


4/ Essai technique : devenir de la matière organique

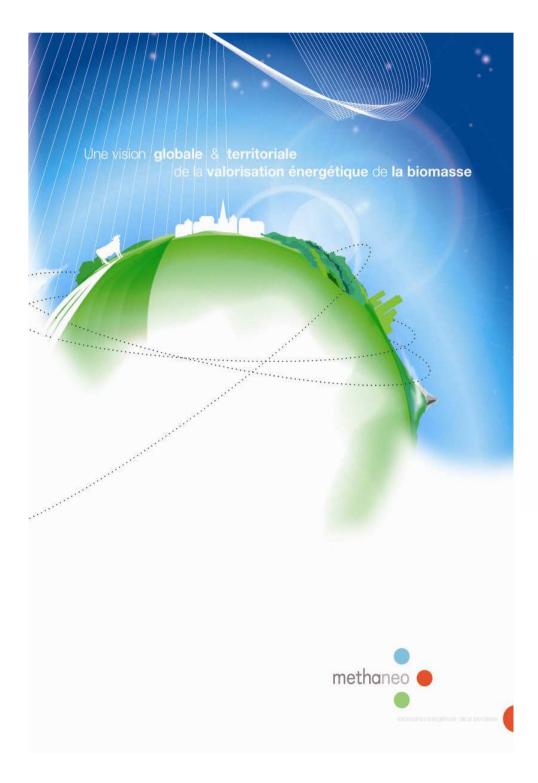
5/ Essai plein champs : fertilisation azotée

6/ Conclusion

Schéma global

Les modèles de projets méthanisation

La Méthanisation Collective Territoriale et Agricole


- Agricole : la quasi-totalité du gisement est composée de produits agricoles bruts ou transformés (IAA)
 - Gisement très abondant,
 - Gisement de faible valeur, économiquement peu transportable
 - Gisement agricole généralement sans concurrence d'usage
- Territoriale : rien ne rentre et rien ne sort du territoire
 - Sentiment d'appartenance, acceptation locale,
 - Aucune concurrence sur les gisements agricoles
 - Faible concurrence sur les gisements IAA
- Collective : les apporteurs de biomasse sont actionnaires des projets
 - Sécurisation des gisements sur le long terme
 - Sécurisation du débouché chaleur

Les modèles de projets méthanisation

Les matières exclues, pour la pérennité des projets

- Les déchets urbains et les déchets à traçabilité incertaine
 - Assurer la qualité des fertilisants agricoles
- Les cultures énergétiques en concurrence des cultures vivrières
 - Favoriser l'acceptabilité du projet
- Les biomasses payantes, dans la mesure du possible
 - Ne pas créer ou déséquilibrer les marchés
 - Ne pas susciter la concurrence

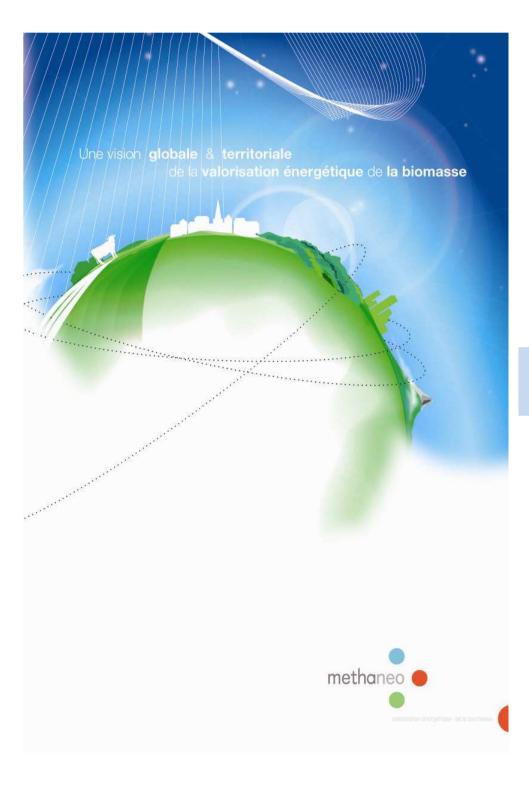
Une illustration:

Vue 3D du projet Tiper

Vue 3D du projet Tiper

Avancement du chantier

Avancement du chantier



Avancement du chantier

SOMMAIRE

1/ Methaneo, qui sommes-nous?

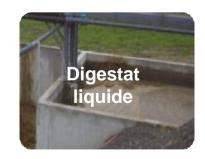
2/ La Méthanisation collective, territoriale et agricole

3/ Contexte des essais : de la théorie à la réalité

4/ Essai technique : devenir de la matière organique

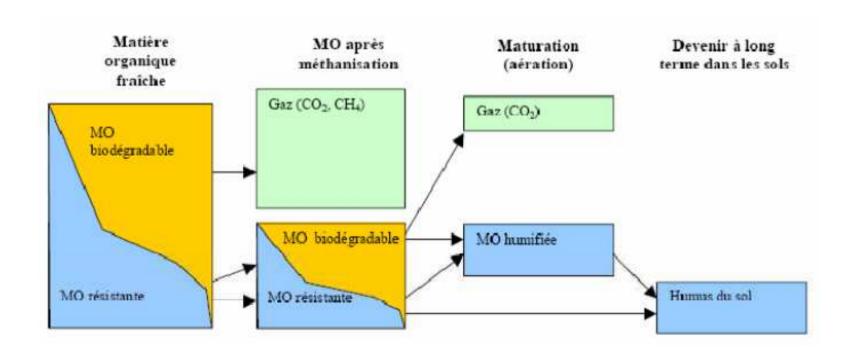
5/ Essai plein champs : fertilisation azotée

6/ Conclusion

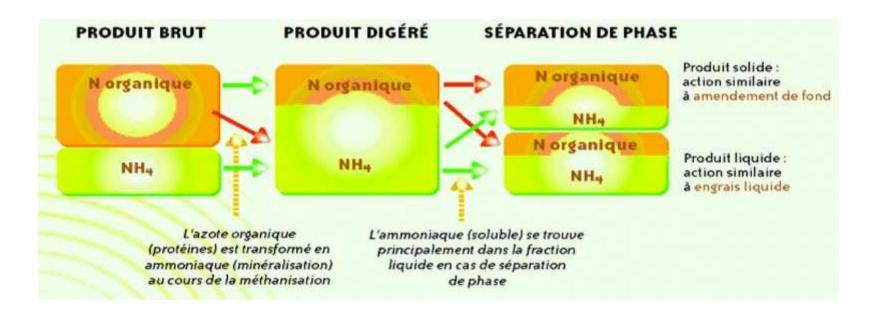


Impact de la digestion anaérobie

- Impacts de la méthanisation sur la composition des effluents d'élevage
 - Modification physique
 - Modification chimique
- Projet de méthanisation collectifs nécessitant une formation des agriculteurs avant l'utilisation des digestats
- Autonomie d'azote sur les élevages,
 réappropriation des pratiques d'épandage



Rappel de la théorie : cas de la MO


Digestion anaérobie : Impact sur la Matière Organique

Rappel de la théorie : cas de l'azote

Digestion anaérobie : Impact sur l'Azote

NH4 = 100 % disponible la 1ère année

Norg = 60 % disponible la 1^{ère} année

Enjeux des essais réalisés

Objectif 1 : Valider la théorie quant à la conservation de la matière organique épandue après méthanisation = politique de conservation des stocks de matière organique dans les sols

- Objectif 2 : Définir et proposer de nouvelles pratiques d'épandages permettant d'optimiser les gains agronomiques (autonomie azote)
 - Définition des périodes d'épandage
 - Dose (courbe de réponse)
 - Forme d'épandage (matériel)

SOMMAIRE

1/ Methaneo, qui sommes-nous?

2/ La Méthanisation collective, territoriale et agricole

3/ Contexte des essais : de la théorie à la réalité

4/ Essai technique : devenir de la matière organique

5/ Essai plein champs : fertilisation azotée

6/ Conclusion

Essai dégradation de la matière organique

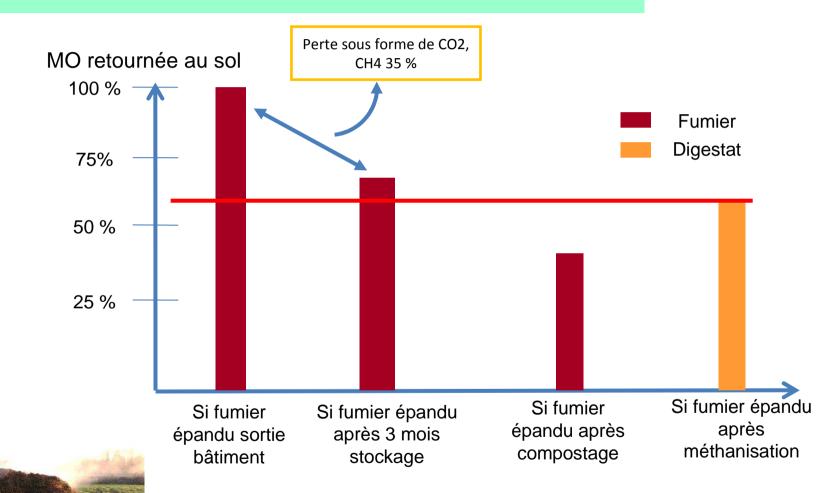
Méthodologie

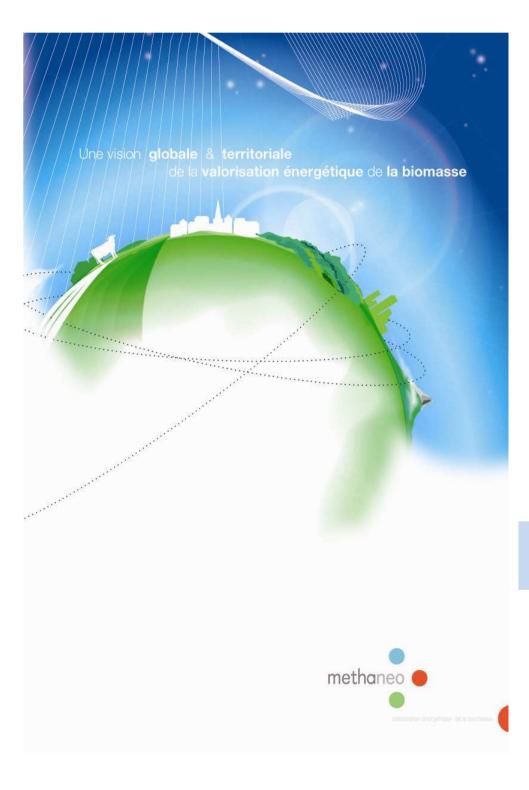
- Analyse de fumiers avant méthanisation (test en laboratoire BMP)
 - Fumier frais
 - Fumier stocké fumière 3 mois
 - Fumier stocké fumière 5 mois
 - Fumier stocké bout de champs 5 mois

Essai dégradation de la matière organique

Résultats

Analyse de BMP réalisés en laboratoire APESA




Résulta		ımier ½ th	
		TIQUES SUBST	RAI
Nom:	FUMIER 1/2 THO CHARLES R EXTERIEUR	DE 3 MOIS EN	
Origine :	12		
Date de prélèvement :	04/08/10		
Humidité :	78,5%	%	
Matière Sèche :	21,5%	% PB	
Matière Organique :	65,5%	% M5	
	14,1%	% PB	ACMOS DELEGISTRA
Observations:			
	MODE	OPERATOIRE	:
Nombre de répétitions :		2	
Caractéristique de Pinoculum :		d'un inoculum sp	nte appauvri (à noter que l'utilisatio sécialisé au substrat testé pourri eures performances)
Durée de l'essai :		21	jours
Température :		39°C	99000
	RE	SULTATS	
Productivité de biogaz :		4	Nm³/tPB
		31	Nm3 biogaz / t MO
Potentiel méthanogène :		23	Nm3 CH4/t MO
Taux de dégradation :		3%	% MO ± 5 %
Teneur en CH, finale :		75%	94

Essai dégradation de la matière organique

Résultats

SOMMAIRE

1/ Methaneo, qui sommes-nous?

2/ La Méthanisation collective, territoriale et agricole

3/ Contexte des essais : de la théorie à la réalité

4/ Essai technique : devenir de la matière organique

5/ Essai plein champs : fertilisation azotée

6/ Conclusion

Méthodologie

Essai sur prairies

Lieu : Mauléon (79)

Type de sol : sablo-limoneux

Campagne : 2011 - 2012

Essai sur blé

Lieu : Saint Christophe (79)

Plate forme expérimentale CA79

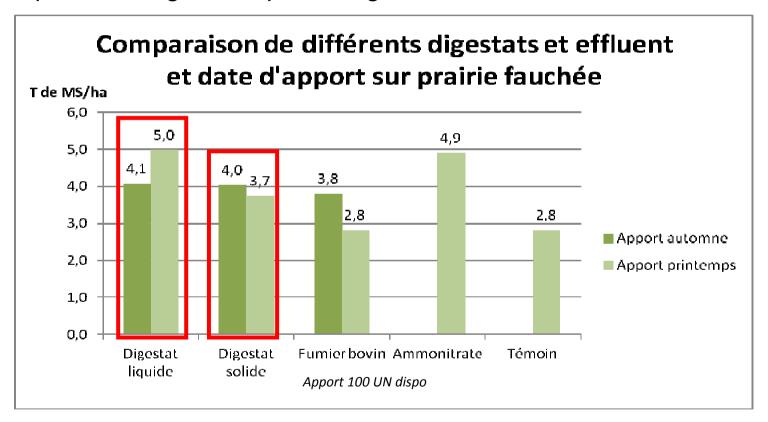
Type de sol : sablo-limoneux

Campagne : 2011 - 2012

Méthodologie

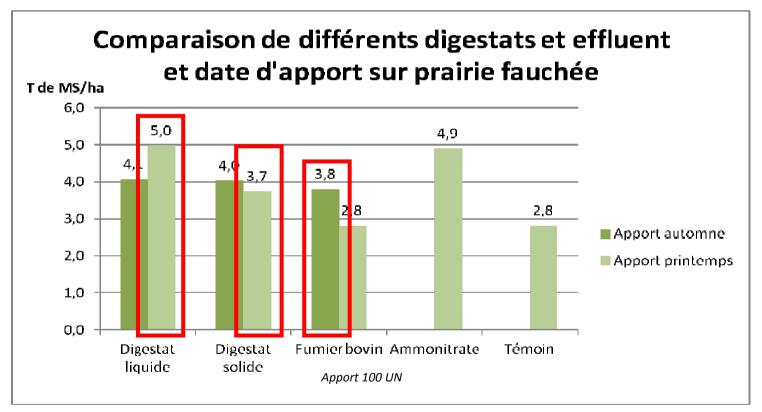
- Placette de 11 à 15 m²
- Digestats provenant d'une
 installation à la ferme (base fumiers
 et lisiers) = analyses N (org / nh4), P et K
- Réplication
 - 4 blocs
 - Validation statistique
 - Traitement des données
- Matériels
 - Fepandage à la main
 - Récolte = moissonneuse adaptée (CA 79)

Méthodologie


- 8 à 12 modalités testées
- Apports engrais organiques
 - Digestat solide
 - Digestat liquide
 - Fumier bovins
 - Ammonitrate
 - ▼ Témoin (= fourniture du sol)
- Apport à N disponible égale
 - Avec NH4 = 100 % dispo
 - Avec Norg = 60 % dispo

Résultat essai prairie fauchée

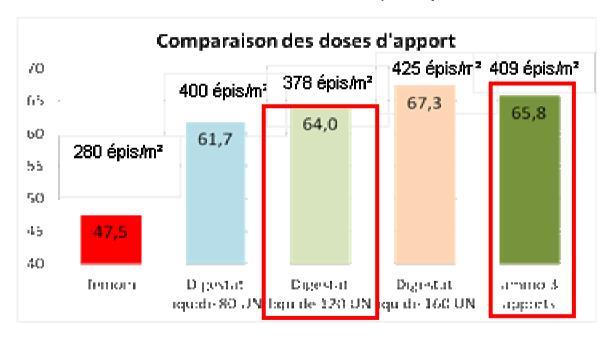
Comparaison digestat liquide / digestat solide


Digestat liquide = logique **engrais** (variations saisonnières)

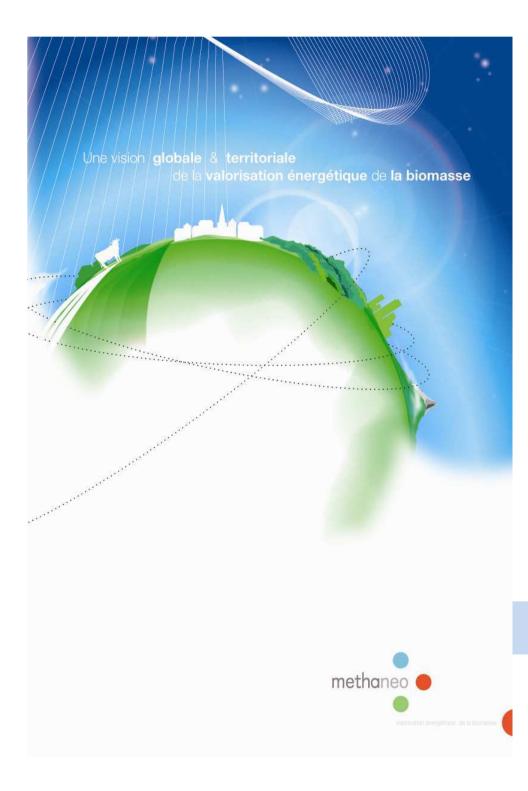
Digestat solide = logique **amendement de fond** (pas de variations)

Résultat essai prairie fauchée

Comparaison fumier automne / digestat printemps



On obtient le même rendement en apportant moins d'azote total, entre **fumier automne** et **digestat solide** printemps


Résultat essai blé

- Cf. Résultat précédent
 - On a donc du digestat à disposition pour d'autres cultures
 - Utilisation DL restant sur céréales (remplacement de l'ammonitrate)

Bon rendement avec du digestat liquide par rapport à l'ammonitrate, on gagne en autonomie d'azote (calcul économique à prendre en compte)

SOMMAIRE

1/ Methaneo, qui sommes-nous?

2/ La Méthanisation collective, territoriale et agricole

3/ Contexte des essais : de la théorie à la réalité

4/ Essai technique : devenir de la matière organique

5/ Essai plein champs : fertilisation azotée

6/ Conclusion

Conclusion

Constitutions de nombreuses références

- 4 campagnes d'essais réalisés de 2009 à 2012
 - Des référence en France très tôt
 - Plusieurs types de cultures / digestat / départements
 - Confirmer les résultats d'essais étrangers (Danemark notamment) sur lisier
 - Fumiers = modèle méthanisation Française

- Des références permettant de conseiller au mieux les agriculteurs partenaires sur des projets collectifs
 - Formation des agriculteurs
 - Réflexion sur du matériel optimal

Conclusion

Et encore des essais à venir ...

- Diffusion des résultats et promotion des intérêts agronomiques de la méthanisation
- Essais en cours cette année sur céréales et prairies

Et aussi : essais sur cultures intermédiaires, coproduits végétaux, ...

Questions?

Résultats des essais disponibles sur demande