Rénovation de la production de froid de l'hôpital de Tourcoing

Par Alain Garnier, ingénieur et directeur du bureau d’études GARNIER 120 rue Gambetta à Reims
Sommaire

1 Présentation du projet ... 3
 1.1 Contexte.. 3
 1.2 Les intervenants sur ce projet... 5

2 Objectifs des travaux ... 6

3 Conception et maîtrise d’œuvre... 7
 3.1 Dépose des installations en place .. 7
 3.2 Conception du froid climatisation ... 8
 3.2.1 Futurs besoins en froid.. 8
 3.2.2 Première analyse avant le choix des solutions............................... 9
 3.2.3 Implantation des équipements.. 11
 3.2.4 Choix de solution en froid climatisation 11
 3.2.5 Conception particulière pour la production de froid à 13°C............... 12
 3.2.6 Schéma de principe des deux sites réunis de production de froid climatisation . 13
 3.2.7 Choix de la température d’eau glaciée pour les blocs opératoires............... 14
 3.2.8 Intérêt du couplage des productions de froid à 13°C et à 10°C 15
 3.3 Conception du froid alimentaire ... 22
 3.3.1 Choix de solution en froid positif .. 22
 3.3.2 Choix de solution en froid négatif .. 23
 3.4 Maîtrise d’œuvre... 25

4 Récupération de la chaleur de réjection 26
 4.1 Principe de fonctionnement ... 26
 4.1.1 Récupération de la chaleur de réjection du froid climatisation............. 26
 4.1.2 Récupération de la chaleur de réjection du froid alimentaire 26
 4.2 Schéma de principe général ... 26

5 Consommation et gain d’énergie.. 27
 5.1 Gain sur le froid rafraîchissement et climatisation 27
 5.2 Gain sur le froid alimentaire ... 29

6 Documents annexes.. 30
 6.1 Qu’est-ce que le free-chilling ?... 30
 6.1.1 Définition du free-chilling ... 30
 6.1.2 Jouer avec la météorologie ... 30
 6.1.3 Les différents type de free-chilling.. 34
 6.1.4 Les différents modes de fonctionnement 36
1 PRESENTATION DU PROJET

1.1 CONTEXTE

Le Centre Hospitalier de Tourcoing est situé au 155 rue du Président Coty à TOURCOING (59200). Il fait partie du secteur tertiaire hospitalier.

Ses installations de « production de froid climatisation » sont de 1984 et ont donc 29 ans, elles doivent être remplacées du fait de leur vétusté et tenir compte de nouveaux besoins frigorifiques.

De plus elles sont très consommatrices d’énergie, car les groupes de froid ont été sélectionnés à l’époque, sur des températures élevées en condensation et basse inutilement en évaporation.

C’est donc une remise en cause importante portant sur la stratégie énergétique de ce Centre Hospitalier qui est recherchée. Les travaux correspondants doivent se dérouler en site occupé et il ne peut y avoir aucun jour de coupure.
1.2 LES INTERVENANTS SUR CE PROJET

Maitrise d’Ouvrage :

Centre Hospitalier de Tourcoing
Hôpital Guy Chatiliez
135, rue du Président Coty
59208 Tourcoing Cedex

Conception et maitrise d’œuvre :

Bureau d’études Energie & Fluides A. GARNIER
20 rue Chanteraine 51100 Reims.
Il connaît particulièrement bien les lieux pour y avoir déjà réalisé un audit énergétique il y a 2 ans.

Moyens humains dédiés à ce projet : Chef de projet + Ingénieur + Technicien

Le marché de conception et de maîtrise d’œuvre comporte :

- Une mission EXE de façon à gagner du temps, bien dimensionner les installations et avoir une mise en service sans trop de problèmes.
- Une mission de contrôle et de réception des travaux avec vérifications des indicateurs de performance.

Entreprise de CVC :

- Pas encore nommée, l’appel d’offres est prévu pour novembre 2013

Entreprise de froid alimentaire :

- Pas encore nommée, l’appel d’offres est prévu pour novembre 2013

Entreprise et constructeur de GTC :

- Pas encore nommés, l’appel d’offres est prévu pour novembre 2013
2 OBJECTIFS DES TRAVAUX

L’objectif du maître d’ouvrage et de remplacer les installations existantes de « froid climatisation » et de « froid alimentaire » de façon à répondre aux nombreux buts suivants :

- Supprimer la vétusté (la production de « froid climatisation » a 29 ans),
- Diminuer la consommation d’énergie et les coûts propres à la production de « froid dédié au rafraîchissement et à la climatisation » ainsi qu’au « froid alimentaire » par une meilleure efficience énergétique,
- Diminuer la consommation d’électricité des auxiliaires,
- Tenir compte de l’extension et donc de nouveaux besoins en froid du bâtiment Chatiliez, tout en dégageant une marge de surpuissance d’environ 15% pour les extensions à venir.
- Faciliter l’exploitation et permettre un suivi des consommations d’énergie,
- Avoir une possibilité de secours en froid (production d’énergie et dissipation de la chaleur),
- Avoir le plus possible recours aux EnR de façon à obtenir un gain sur les coûts d’exploitation et une indépendance vis à vis des fluctuations des coûts d’énergie fossile,
- Supprimer le R22 - CFC : chlorofluorocarbones (respect de la réglementation),
- Supprimer les actuels risques de légionellose (présence de tours ouvertes de refroidissement),
- Assurer la continuité de la production de froid en cas de panne (proposer un schéma de décision),
- Bien connaître ses consommations en comptant l’énergie propre à la production de froid et à ses auxiliaires,
- Calculer et afficher les indicateurs de performances de façon à vérifier que les économies escomptées soient atteintes et qu’il n’y ait pas de dérive dans le temps,
- Faire en sorte que les services et plus particulièrement les blocs opératoires actuels et futurs soient toujours opérationnels lors des travaux,
- Faire en sorte que le gain d’énergie apporté par les nouvelles installations puisse compenser une partie de la consommation qui viendra de l’extension et donc des nouveaux besoins en froid du bâtiment Chatiliez.
3 CONCEPTION ET MAITRISE D'ŒUVRE

3.1 DÉPOSE DES INSTALLATIONS EN PLACE

La demande initiale du Centre Hospitalier était de remplacer les installations existantes de production de « froid climatisation » et de « froid alimentaire » jugées trop vétustes (1984 : 29 ans) et qui, de plus, fonctionnent encore au R22 (HCFC).

Les 2 anciens groupes de production d'eau glacée pour le « froid climatisation »
Groupe TRANE de 255 kWf fonctionnant à 6°C de température d'eau glacée avec un refroidissement en eau à 50/40°C

Local technique de production de froid en rez-de chaussée
Local technique avec tours de refroidissement situées en toiture terrasse à proximité de la chaufferie.

Tours de refroidissement ouvertes CHAPPEE type 18 E d'une puissance unitaire de 520 kW au régime d'eau 50/40°C
Une seule tour de refroidissement pour 2 groupes de froid est nécessaire.
La seconde tour est hors d'état de fonctionner ce qui mettrait le Centre Hospitalier en difficulté en cas de panne de celle en service…
Une partie du froid alimentaire avec 4 compresseurs COPELAND DLSG 401 DWN et un condenseur à air multi-circuits FRIGA BOHN CAP 285 fonctionnant au R22 (HCFC)

3.2 CONCEPTION DU FROID CLIMATISATION

3.2.1 Futurs besoins en froid

Dans l'extension aile C du bâtiment Chatiliez (contiguë à la réanimation actuelle), se situera :

- La réanimation (1450m²)
- La surveillance continue de la réanimation (1200m²)
- La chirurgie ambulatoire (545m²)
- Le secteur naissance (1200m²)
- L'extension du bloc opératoire (400m²)
- La néonatalogie (450m²)
- Les salles de monitoring et d'échographie (150m²)

Les besoins frigorifiques de l’extension aile C du bâtiment Chatiliez

<table>
<thead>
<tr>
<th>Services</th>
<th>Surface m²</th>
<th>Puissance kWf à 13°C</th>
<th>Puissance kWf à 10°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Réanimation</td>
<td>1450</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Surveillance continue réanimation</td>
<td>1200</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Chirurgie ambulatoire</td>
<td>545</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Secteur naissance</td>
<td>1200</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Blocs opératoires</td>
<td>400</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>Néonatalogie</td>
<td>450</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Salles monitoring et échographie</td>
<td>150</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5495 m²</td>
<td>375 kWf</td>
<td>165 kWf</td>
</tr>
</tbody>
</table>

Les besoins frigorifiques sur les 2 sites de production de froid
La production de froid à 13°C dans le local technique froid existant aura donc une puissance globale de : 120 + 87 + 70 + 87 + 375 + 60 = 799 kWf.

La production de froid à 10°C installée au niveau de l’extension de l’aile C aura une puissance globale de 260 + 165 + 170 = 595 kWf.

3.2.2 Première analyse avant le choix des solutions

Connaissance des installations :

Un audit énergétique a été réalisé en 2012, il prenait juste en compte l’extension de « l’aile C » du bâtiment principal « l’hôpital Chatiliez ». Cet audit a porté sur la suppression de la vétusté, le remplacement du R22 et sur une diminution de la consommation énergétique.

A la suite de cet audit et compte-tenu de l’échéance fin 2013 d’engager les travaux de remplacement du CFC, un marché de conception et de maîtrise d’œuvre a été attribué au bureau d'études GARNIER sur des critères tels que l’expérience en production de froid, des EnR et de la connaissance du secteur hospitalier.

Augmentation des besoins frigorifiques :

En cours d’APS, le Centre Hospitalier qui continuait d’interroger ses services a informé le bureau d’études de nouvelles demandes en froid conduisant à une puissance beaucoup plus importante. L’APS en cours a été modifié rapidement pour tenir compte de cette nouvelle demande.

Lors de la remise de l’analyse le MO nous a informé qu’il souhaitait que les économies d’énergie et donc le coût d’énergie puisse compenser au mieux cette extension des besoins en froid.

Le bon choix de la température future d’eau glacée et de refroidissement :

Lors de nos relevés nous avions détecté qu’une partie de l’eau glacée était inutilement produite à 6°C et que la sélection de la température d’eau de refroidissement des groupes avait été particulièrement élevée 50°C, or :

- Un gain de 1°C sur la température d’évaporation permet un gain électrique de 3% sur la consommation du compresseur.
- Un gain de 1°C sur la température de condensation permet également un gain électrique de 3% sur la consommation du compresseur.

<table>
<thead>
<tr>
<th>BESOINS FRIGORIFIQUES</th>
<th>LT existant Puissance kWf EG 13°C</th>
<th>LT aile C Puissance kWf EG 10°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>BO existants</td>
<td>120</td>
<td>260</td>
</tr>
<tr>
<td>Ventilo-convecteurs</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>IRM</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Laboratoires</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>BO nouveaux</td>
<td>375</td>
<td>165</td>
</tr>
<tr>
<td>Stérilisation</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Laboratoires</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>Total</td>
<td>799 kWf</td>
<td>595 kWf</td>
</tr>
</tbody>
</table>
Les différentes transformations subies par le fluide frigorigène entre la sortie du compresseur état (3) et l’amont du détendeur état (5) :

(3) vapeur sèche surchauffée, (point A) vapeur sèche saturée,
(4) liquide saturé,
(3) --> (4) condensation du gaz,
(5) liquide sous-refroidi.

La présence de free-cooling :

Les blocs opératoires sont composés de plusieurs salles d’opération ayant chacun leur centrale de traitement d’air. A l’époque où les blocs ont été construits, quand il n’existait qu’une seule centrale de traitement d’air par bloc et non par salle, le renouvellement d’air était de 12 vol/h alors qu’il n’était exigé que de 6 vol/h pour une centrale de traitement d’air par salle.

La conséquence est qu’en hiver, on a un free-cooling qui permet d’évacuer la chaleur des apports en début et fin de demi-saison. Par contre ce renouvellement d’air continu à 12 vol/h en été et en hiver induit réciproquement des consommations d’énergie importantes en froid et en chaud.

L’analyse - Les fondamentaux – Les choix :

Ces nouveaux éléments ajoutés au résultat de l’audit énergétique ont changé profondément notre analyse. Voici de façon résumée les principaux points qui nous ont guidé dans nos choix :

- Nous avons détecté deux catégories de température d’eau glacée avec des besoins localisés à deux endroits différents.
- Remplacer la nouvelle production de froid en lieu et place de celle existante était impossible, le local technique était trop petit.
- Il nous fallait continuer de produire le froid en site occupé, et ce n’est pas rien. Il s’agit d’un Centre Hospitalier avec de nombreux services qui doivent rester opérationnels 24h sur 24.
- La restructuration et le passage futur d’un renouvellement de 12 à 6 vol/h dans les salles d’opérations existantes et futures doivent être si possible compensés par un système de rafraîchissement gratuit. De plus la puissance frigorifique à court terme doit rester la même pour continuer d’alimenter les salles d’opérations existantes.
- L’augmentation de puissance frigorifique était d’un facteur de 2,3 et trouver des économies d’énergie permettant d’effacer une majeure partie de l’augmentation de consommation relevait d’un pari fou.
3.2.3 Implantation des équipements

Ces 2 sites de production de froid ne seront pas nécessairement réalisés en même temps, notre solution est donc un avantage car elle peut permettre un phasage des travaux et avec, à court terme, un secours entre les 2 sites de production de froid.

Quand les nouveaux blocs opératoires dans « l’aile C » ou encore quand la rénovation des blocs opératoires existants sera réalisée, ces 2 productions de froid pourront tour à tour et suivant le phasage des travaux, continuer de desservir les centrales de traitement d’air, en particulier celles des blocs opératoires.

Situation des futurs LT de production de froid ainsi que des blocs opératoires

3.2.4 Choix de solution en froid climatisation

Il nous faut remplacer l’actuelle production de froid par une production centralisée plus performante et plus secourable.

Après avoir analysé les besoins actuels et futurs, nous sommes repartis des fondamentaux et avons conçu les installations de la manière suivante :

- Il nous faudra une puissance frigorifique capable de répondre aux besoins actuels et futurs.
- Il nous faudra non plus, ne remplacer que l’actuelle production de froid, mais en créer une seconde plus proche des nouveaux besoins.
- Il nous faudra non pas produire de l’eau glacée à 6°C comme par le passé mais à deux températures différentes et adaptées aux besoins à produire : 13°C pour le refroidissement et 10°C pour la climatisation (et sa déshumidification).
- Il nous faudra spécialiser ces 2 sites de production de froid de façon à gagner en performance et en pertes sur les réseaux : l’un produira l’eau glacée à 13°C et l’autre à 10°C.
• Chaque production de froid devra utiliser le free-chilling (EnR) au maximum pour couvrir une majeure partie des besoins de froid et compenser une partie du free-cooling qui disparaîtra à court terme. Ce qui induit que le remplacement et la mise en place des nouveaux émetteurs doit avoir des surfaces d’échange prévues en conséquence.
• On devra sélectionner les groupes de production d’eau glacée de façon à en tirer un maximum de performance. Cela passera par le choix d’une eau de refroidissement à basse température de 35/30°C et des compresseurs à double vis modulant leur puissance de 25 à 100%, etc.
• On devra utiliser la chaleur de réjection des groupes pour préchauffer l’eau chaude sanitaire (quand on n’est pas en période de free-chilling),
• On devra utiliser des auxiliaires à basse consommation d’énergie, les pompes en particulier qui seront de classe IE3 et à débit variable de façon à répondre à la directive ErP de 2015.
• On devra se servir du superviseur de la GTC pour réaliser un bilan frigorifique à partir des comptages d’énergie de façon à optimiser l’efficacité énergétique GTC et sortir des indicateurs de performance.

Les avantages de ces choix :
• Ils permettront de tenir compte des nouveaux besoins en froid avec une marge d’environ 15% souhaité par le MO,
• Ils permettront d’avoir 2 productions de froid à 2 endroits différents répondant à des températures différentes d’eau glacée :
 o Si ti ≥ 24°C : eau glacée à 13°C au lieu de 6/11°C. C’est le cas du rafraîchissement des chambres et des salles de réveil.
 o Si ti < 24°C : eau glacée à 10°C au lieu de 6/11°C. C’est le cas de la climatisation des bacs opératoire et des laboratoires.

Cette distinction des températures d’eau glacée permettra d’apporter un gain d’énergie respectivement de 21% et 12% dans notre cas en tenant compte qu’elle est produite actuellement à 6°C et qu’il existe ensuite des vannes installées en mélange sur certains circuits.

3.2.5 Conception particulière pour la production de froid à 13°C
On l’a déjà dit, chaque production d’eau glacée sera spécialisée dans la température d’eau glacée à produire, mais néanmoins elles comportent quelques petites différences :
• La production d’eau glacée à 13°C est proche de la chaufferie et de sa production d’eau chaude sanitaire. La réjection de sa chaleur est énorme mais celle-ci ne fonctionne que lorsque le free-chilling ne fonctionne pas.
• La production de froid alimentaire est également proche de la chaufferie et de sa production d’eau chaude sanitaire. La réjection de sa chaleur est plus faible mais celle-ci ne fonctionne que lorsque le free-chilling ne fonctionne pas.

Ces deux réjections de chaleur seront utilisées pour préchauffer l’eau chaude sanitaire ce qui diminuera de beaucoup le poste important que représente la consommation d’énergie pour produire celle-ci.
3.2.6 Schéma de principe des deux sites réunis de production de froid climatisation

On aura donc pour chaque site de production de froid le schéma de principe suivant :

Production d'eau glacée à 13°C pour le rafraîchissement – LT en lieu et place de celui existant (en bleu à gauche sur la photo précédente)
3.2.7 Choix de la température d'eau glaciée pour les blocs opératoires

Les blocs opératoires exigent une température intérieure relativement basse de 21°C ± 1°C (réglable de 19 à 26°C). Le contrôle de l'humidité relative n'est pas nécessaire sauf prescriptions particulières. On prévoira donc une déshumidification en été et demi-saison pour donner plus de confort aux chirurgiens, mais pas d'humidification en hiver où l'air est pourtant sec.

Cela exigera le recours à des centrales de traitement d'air comportant des batteries froides de grande surface d'échange et dont la température d'eau glaciée qui circulera à l'intérieur sera suffisamment basse pour qu'à la fois on puisse refroidir l'air (chaîle sensible) et le déshumidifier (chaîle latente).

Pour obtenir une bonne efficacité thermique, l'eau glaciée circulera dans les batteries à contre-courant par rapport à l'air. L'air se refroidit : la température sèche diminue. La vapeur contenue dans l'air humide, se refroidit et se condense sur la surface de la batterie froide dont la température de surface est inférieure à la température de rosée de l'air. L'humidité absolue « r » diminue à la sortie, car l'eau est "piégée" sur la batterie et est évacuée sous forme de condensat.
La chaleur correspondant à la condensation de la vapeur d’eau est dite latente. L’« ADP » (Apparatus Dew Point) représente la température moyenne de la batterie qui lui permettra de condenser. Exemple avec un ADP de 10°C on choisira de produire de l’eau glacée à 7/12°C.

Comme la déshumidification ne sera utilisée qu’en été, nous produirons l’eau glacée 10°C durant cette période. En hiver ainsi qu’en demi-saison, la température de l’eau glacée sera produite à 13°C. Cette « loi glissante » permettra de gagner environ 5 à 6% sur l’année, et de recourir plus amplement au free-chilling.

3.2.8 Intérêt du couplage des productions de froid à 13°C et à 10°C

La production d’eau glacée à 13°C en lieu et place de celle actuelle et la nouvelle à 10°C en sous-sol de l’extension de l’aile C du bâtiment Chatiliez seront connectables. De cette façon on pourra réaliser un secours ainsi qu’une optimisation des performances des groupes en fonction de la charge en froid.

En effet, un groupe semi-hermétique à double vis a un meilleur rendement à charge partielle car le volume de gaz compressé et de liquide du fluide réfrigérant diminue mais les surfaces d’échange du condenseur et de l’évaporateur restent fixes. Pour obtenir une bonne efficience énergétique en froid, il sera préférable de faire fonctionner 4 compresseurs à vis à 50% que d’en faire fonctionner 2 à 100%, le gain d’énergie est de 35%, d’où l’intérêt de réunir les deux sites de production afin de réaliser un tronc commun des groupes de froid.

De façon à optimiser cette efficience énergétique en froid, le superviseur de la GTC réalisera un bilan thermique et c’est lui qui gérera le nombre et la taille du groupe le plus adapté à répondre à la charge en froid.

Cette connexion entre les deux productions sera réalisée en phase 2.

Elle se fera de façon automatique et sera réalisée par l’exploitant depuis le poste de supervision. L’ordre donné viendra ouvrir des vannes motorisées placées entre les 2 boucles d’eau glacée 13 et 10°C.
Couplage des productions de froid à 13°C et à 10°C
Avantages de cette solution :

- Les travaux prévus permettront une suppression du R22 (CFC) par son remplacement en R134a (HFC : tétrafluoréthane).
- Le choix de cette solution permettra un secours ainsi qu’une possibilité d’utilisation d’une production de froid sur deux, grâce à une mise en communication des 2 boucles primaires d’eau glacée. Pour simplifier l’exploitation, des vannes motorisées permettront de mettre ces 2 productions en communication à l’aide d’une commande à distance (GTC).
- Ce choix permettra de n’avoir en tout que : 2 x 2 groupes de 1 compresseur = 4 compresseurs au lieu de : 2 x 2 groupes de 2 compresseurs = 8 compresseurs. Chaque compresseur est capable de moduler sa puissance de 25 à 100%.

Le coût des travaux sera d’autant plus intéressant.
- Le choix de cette solution permettra un fonctionnement prioritaire en free-chilling qui apporte un gain d’énergie d’environ 50% sur la production de froid à 13°C et d’environ 23% sur celle à 10°C à plus basse en température mais qui fonctionne plus souvent (blocs opératoires).

La gestion technique des compresseurs à vis sera d’autant plus intéressante.

Performance des aéroréfrigérants adiabatiques

Aéroréfrigérant sec

- La température de l’air extérieur permet de refroidir l’eau avec un Δt d’environ 5K avec l’eau à refroidir.

Le gain énergétique par rapport à une tour ouverte sera d’environ de 20% cette différence viendra de la température de condensation choisie en général plus basse (environ 5K) et de la très grande surface d’échange par rapport à une tour.

Aéroréfrigérant adiabatique (humide)

- La température de l’air extérieur permettra de refroidir l’eau avec un Δt d’environ 2,2K entre le "bulbe humide" de cet air et l’eau à refroidir.

Le gain énergétique par rapport à un aéroréfrigérant sec sera donc d’environ de 6%.

Ce refroidissement supplémentaire sera obtenu grâce à l’évaporation partielle de l’eau en entrée de la batterie de l’aéroréfrigérant.
Scénario de fonctionnement de la production de froid

<table>
<thead>
<tr>
<th>Conditions de fonctionnement</th>
<th>Ts ≤ 8°C</th>
<th>Th ≤ 10°C avec besoin de 50% en froid</th>
<th>Th ≤ 10°C avec besoin de 50% en froid</th>
<th>Ts >10°C avec besoin de 50% en froid</th>
<th>Ts >10°C avec besoin de 100% en froid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free-chilling</td>
<td>Free-chilling sec avec 1 aéroréfrigérant</td>
<td>Free-chilling humide avec 1 aéroréfrigérant</td>
<td>Free-chilling sec avec 2 aéroréfrigérants</td>
<td>Free-chilling humide avec 1 aéroréfrigérant</td>
<td>Thermodynamique avec 1 groupe de froid associé à 1 aéroréfrigérant pour dissiper la chaleur de réjection</td>
</tr>
<tr>
<td>Froid thermodynamique</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thermodynamique avec 2 groupes de froid associés à 2 aéroréfrigérants secs ou humides pour dissiper la chaleur de réjection</td>
</tr>
</tbody>
</table>

Nota :
- En hiver on n’aura pas besoin de déshumidifier et la température de l’eau glacée pourra être de 13°C sur les 2 sites de production de froid. Cela favorisera encore plus le fonctionnement au free-chilling.
- La nuit du fait d’un écart diurne pouvant aller jusqu’à 10°C, le fonctionnement du free-chilling sera utilisé majoritairement.
- Dans ce tableau, on a considéré que l’on pouvait produire grâce au free-chilling, de l’eau glacée à 13°C avec de l’air sec à 8°C (aéroréfrigérant travaillant en sec) ou de l’air humide à 10°C (aéroréfrigérant travaillant en humide (adiabatique)).

Performance des émetteurs
Lors du remplacement futur des émetteurs, il faudra sélectionner leur surface d’échange de façon à favoriser le free-chilling tout en ne créant pas de perte de charges supplémentaires qui créeraient une surconsommation électrique des ventilateurs.

Pour mettre en exergue le free-chilling sans tomber dans ce piège, il vaudra mieux installer un minimum de batteries sur l’air et disposer des échangeurs sur l’eau de refroidissement et glacée.
Règles de base pour recourir majoritairement au free-chilling

- Avoir des aéroréfrigérants avec de grandes surfaces d’échange et toujours propres,
- Avoir des émetteurs avec de grandes surfaces d’échange et toujours propres,
- Pour ne pas risquer de détruire les générateurs de chauf et de froid, il faudra laisser séparés les circuits chaud et froid,
- Pour ne pas risquer de mélanger l’eau glacée produite en EnR ou en énergie fossile thermique, il faudra les séparer au moyen d’un échangeur de disconnexion,
- Pour substituer au maximum l’énergie fossile par des EnR, on installera en série les échangeurs ou les circuits d’eau suivant leur gradient de température : EnR puis fossile.

Le choix de cette solution permettra, de par les performances des nouveaux groupes de production d’eau glacée (EER), de la modulation de puissance des groupes, d’un choix de température d’eau glacée plus adapté, de l’utilisation de leur chaleur de réjection pour préchauffer l’ECS, un gain d’énergie électrique d’environ 40% par rapport à une installation identique à celle existante (et bien entendu à puissance égale).

Performance des groupes de froid

Une température d’eau glacée adaptée aux besoins, une meilleure performance des matériels de production de froid par des groupes semi-hermétiques à double vis et surtout un recours important au free-chilling indépendamment de la réjection de chaleur, une simultanéité du free-chilling et de la réjection de chaleur qui permet d’utiliser 10% du potentiel de ces deux systèmes.

Des moteurs à classe d’efficacité IE4 ce qui permet un gain d’énergie électrique sur les moteurs et donc un gain sur l’électricité d’environ 35% par rapport à une installation identique à celle d’aujourd’hui et à puissance égale.
Des pompes adaptées aux besoins (débit variable).

De plus, toute la chaleur de réjection venant des productions de froid permettra le préchauffage de la production d'eau chaude sanitaire située non loin :

- La production de froid confort d'une plus grande puissance permettra le préchauffage d'ECS à 30°C.
- La production de froid alimentaire avec une température de condensation plus élevée et un fonctionnement toute l’année permettra le préchauffage d'ECS à 38°C.

Ce choix permet de couvrir plus des 23% des consommations en énergie renouvelable (EnR) demandées en 2020 (engagement de la France - En application de l'article 4 de la directive 2009/28/CE de l'Union européenne).

- Le choix de cette solution permettra un phasage en site occupé où un nombre minimum de salles d’opération doivent rester opérationnelles.
- Le choix de cette solution permettra tout en faisant passer la puissance frigorifique de 640 kWf à 1394 kWf, soit 2,3 fois supérieure par rapport à celle en place, d’avoir une consommation d’énergie électrique et donc un coût d’énergie qui n’augmentera que de +17% par rapport à l’installation existante aujourd’hui.
- Les travaux prévus permettront de supprimer les risques de légionellose. Les tours supprimées seront remplacées par des aéroréfrigérants adiabatiques avec une attestation de non risque remis par l’exploitant via le constructeur.
- Ce choix de solution tient compte des risques de nuisance acoustique.

Les aéroréfrigérants adiabatiques permettent de réduire la puissance de la production de froid (gain de 25 à 30% par rapport aux condenseurs à air). Ils permettent également de réduire considérablement la consommation d’énergie et d’eau. En contrepartie, ils sont légèrement plus bruyants que les anciennes tours de refroidissement. Ce bruit est surtout dû au nombre de ventilateurs permettant de faire passer de l’air humide au travers d’un média synthétique puis d’une batterie.

Pour la production de froid à 13°C, nous proposons de faire installer les aéroréfrigérants adiabatiques au sol derrière le bâtiment des locaux techniques. Les riverains les plus proches sont à 75 m et ils sont masqués par des arbres à 25 m de distance de la source de bruit. Un mur anti-bruit sera construit, il sera constitué d’écans acoustiques correspondant aux côtés de la plateforme qui recevra les aéroréfrigérants.
Exemple de mur anti-bruit

Ces écrans acoustiques seront constitués de vantelles avec absorbant acoustique qui permettront à l’air frais de parvenir aux deux aéroréfrigérants. Pour avoir une meilleure esthétique au sein du centre hospitalier, ce mur pourra être végétal sous conditions que le passage à l’air soit bien assuré et perdue.

Hauteur du mur antibruit

La hauteur de ce mur antibruit sera en fonction de la position en altitude des personnes à protéger par rapport à la source (aéroréfrigérants). On pourra le transformer en mur végétal si le maître d’ouvrage le souhaite. Comme quoi le technique et l’urbanisme peuvent faire bon ménage …

A priori en sélectionnant des aéroréfrigérants avec des moteurs de ventilateur à 39 Hz plutôt que 50 Hz comme c’est le cas habituellement, on gagnera 6 dB(A) et cela devrait suffire.
Pour la production de froid à 10°C située en sous-sol de l’extension de l’aile C du bâtiment Chatiliez, nous proposons de faire installer un capotage d’isolation acoustique et d’absorption complet des groupes de froid pour les bruits aériens.

Pour la réduction des bruits solidiens, c’est-à-dire transmis par vibrations en contact, les compresseurs sont fixés aux châssis par des plots antivibratils et raccordés aux circuits frigorifiques par des flexibles.

Les groupes seront placés sur des socles flottants au moyen d’un matériau antivibratil.

Dans l’extension de l’aile C il est prévu de tenir compte du bruit aérien des futurs aéroréfrigérants qui seront installés en toiture-terrasse.

3.3 CONCEPTION DU FROID ALIMENTAIRE

3.3.1 Choix de solution en froid positif

Dimensionnement classique du compresseur :

La puissance de la machine frigorifique a été dimensionnée pour répondre aux conditions de fonctionnement extrême (période de canicule), sans compter les surdimensionnements liés aux incertitudes d’utilisation des meubles et des chambres frigorifiques.

Généralités :

La première économie consiste à évaluer au plus près la puissance frigorifique nécessaire, car la machine frigorifique s’adapte mal aux basses régimes.

Chaque palier de diminution de 25 % de la puissance frigorifique du groupe ne réduit la puissance électrique absorbée que de 10 % en moyenne !

Le dimensionnement courant du compresseur pour une installation de froid alimentaire est naturellement conditionné par :

- La puissance frigorifique à fournir,
- Le type de fluide réfrigérant,
- La température nécessaire à l’application au niveau de l’évaporateur (froid positif ou négatif, type de denrées à conserver, ...) et ce, dans des conditions optimales,
- La température extrême qui peut régner au niveau du condenseur (température de l’air ou de l’eau selon le type de condenseur).

Une température de condensation qui revient régulièrement dans le dimensionnement classique est de l’ordre de 40°C ; ce qui correspond, compte tenu d’un "pinçement" (caractérise le dimensionnement du condenseur) de l’ordre de 8K, à une température d’entrée d’air de 32°C. Cette température d’air d’entrée correspond à une température "caniculaire".

Ce qui est difficile dans le froid alimentaire, par rapport à la climatisation où on pourrait tolérer un certain inconfort momentané, c'est que les réglementations et normes en matière
de respect de la chaîne de froid sont très contraignantes (il y va de la santé des consommateurs) et imposent aux exploitants de prendre les précautions qui s'imposent afin de respecter les températures de conservation.

Pour se prémunir de toutes dérives, le dimensionnement des compresseurs sera réalisé avec une valeur de 40°C de température de condensation même si on observe des températures d'air de l'ordre de 32°C quelques heures sur les 8 760 heures qui composent une année ...

3.3.2 Choix de solution en froid négatif

Lorsque le taux de compression est trop élevé, on travaille plutôt avec deux étages.

De par les limites mécaniques des compresseurs à pistons, le taux de compression HP/BP ne peut pas dépasser en pratique la valeur de 8. En froid négatif, le taux de compression HP/BP nécessaire pour assurer au niveau de l'évaporateur des températures de l'ordre de -35°C implique un taux de compression de l'ordre de 15.

Ces applications demandent donc de découper la phase de compression en deux étages. Afin de réduire au maximum la taille (ou la cylindrée) des compresseurs, la pression intermédiaire entre les deux étages de compression doit être choisie de manière précise.

Cascade de plusieurs compresseurs :
Quand la puissance frigorifique devient importante comme notre cuisine hospitalière, le choix d'une centrale de compresseurs s'impose pour les raisons suivantes :

- Fiabilité et sécurité d'alimentation en fluide frigorigène (ne pas "casser" la chaîne du froid) puisque les machines sont indépendantes;
- Modulation de la puissance frigorifique par enclenchement ou déclenchement successif des différents compresseurs de la centrale.
La variation progressive de la puissance est énergétiquement favorable puisqu'aucune machine n'est dégradée dans son fonctionnement.

Bien sûr, le coût d'investissement sera plus élevé que si l'on utilisait une seule grande machine, mais imaginerait-on d'en installer une seule sans prévoir une cascade pour reprendre les faibles besoins de demi-saison ?

Un découpage de la puissance en étages s'impose, surtout du fait des variations de charge importantes.
3.4 MAITRISE D’ŒUVRE

Les études d’avant-projet sont terminées et le résultat est favorable à la réalisation des travaux décrits ci-avant.

Les études de projet sont en cours et des appels d’offres doivent avoir lieu fin 2013 et début 2014.

La réalisation reste à faire. Elle est imminente du fait des échéances de la réglementation concernant la suppression du R22, de la vétusté générale des installations et particulièrement du froid alimentaire et de l’extension de l’aile C du bâtiment Chatiliez qui a un besoin en froid climatisation important. Il reste au Centre Hospitalier de déterminer un calendrier correspondant à la fois à ses échéances et à ses budgets.
4 RECUPERATION DE LA CHALEUR DE REJETION

4.1 PRINCIPE DE FONCTIONNEMENT

4.1.1 Récupération de la chaleur de réjection du froid climatisation

On réalisera un préchauffage d’ECS grâce à la chaleur de réjection des groupes de production d’eau glacée servant à la climatisation.

La production de froid climatisation ne fonctionne qu’une partie de l’année à cause de la mise en place du système de free-chilling. La température de condensation est moins élevée mais comme le gisement est important, il sera mis malgré tout en place une récupération de la chaleur de réjection des groupes de production d’eau glacée.

Comme son gradient de température est plus faible que celui du froid alimentaire, on le placera avant dans le montage en série de la production d’ECS.

4.1.2 Récupération de la chaleur de réjection du froid alimentaire

On réalisera un préchauffage d’ECS grâce à la chaleur de réjection des groupes de froid alimentaire.

La production de froid alimentaire fonctionne toute l’année et la température de condensation est fort élevée. C’est une source de chaleur non négligeable surtout avec un bon gradient de température. On réalisera donc une récupération de sa chaleur de réjection au moyen d’un condenseur à eau placé avant le condenseur à air des groupes.

4.2 SCHEMA DE PRINCIPE GENERAL

Nota : La modification côté du stockage d’ECS devra être réalisée par l’exploitant au titre de son P3 (contrat revu récemment par le bureau d’études ECIC).
5 CONSOMMATION ET GAIN D’ÉNERGIE

Il n’existe pas actuellement de compteurs de chaleur ou de froid, juste des compteurs d’eau, d’électricité générale et de gaz naturel général et par chaudière. Il est donc difficile d’estimer la consommation avant et après travaux ainsi que le gain en Euros.

On ne présente donc que le gain d’énergie en %.

5.1 GAIN SUR LE FROID RAFRAÎCHISSEMENT ET CLIMATISATION

La rentabilité du free-chilling sera d’autant plus élevée que les besoins de refroidissement seront importants en hiver et que l’installation s’y prêtera (surface des aéroréfrigérants et des émetteurs).

A Lille, avec un free-chilling sec, on gagnerait environ 20% d’énergie électrique destinée au froid pour un fonctionnement de jour (blocs opératoires) et 37% pour les besoins continus de rafraîchissement ou de climatisation (chambres par exemple).

Il faudra favoriser le refroidissement nocturne des locaux sans créer d’inconfort pour les occupants, ce qui valorisera mieux le free-chilling puisque la température extérieure sera plus basse la nuit.

Les constructeurs annoncent au travers de leur bilan thermique un gain pouvant aller parfois jusqu’à 60%. Il s’agit en fait d’un « potentiel de rafraîchissement » et non d’un résultat que l’on obtient à tous les coups.

Ils oublient le rendement de distribution et d’échange final et bien souvent les calculs présentés tiennent comptent d’un fonctionnement continu. Il faut tenir compte du nombre d’heures de jour et de nuit dans l’année pendant lesquelles les aéroréfrigérants délivreront une température d’eau refroidie permettant le rafraîchissement.

Tenir compte des heures de nuit dans des chambres d’hôpital c’est normal mais faire de même pour les blocs opératoires, c’est fausser le résultat, car la nuit du fait de l’écart diurne la température sèche et dans une moindre mesure de la température humide améliore le gain d’énergie.
Potentiel de gain apporté par un free-chilling sec

Taux de couverture annoncé par un constructeur avec une installation en free-chilling sec suivant différentes températures d’eau glacée

Si l’on tient compte du lieu, des heures de fonctionnement du froid, du système de free-chilling (alternatif ou bivalent) ainsi que des pertes thermiques, il en est autrement.

Notre solution est de recourir à des aéroréfrigérants adiabatiques pour réaliser une partie du froid et de les faire fonctionner au maximum du potentiel d’économie d’énergie offert par le free-chilling.

Le gain d’énergie électrique obtenu sur la production de « froid rafraîchissement et climatisation » sera de 2 ordres du fait des températures d’eau glacée différentes et du temps de fonctionnement du rafraîchissement et de la climatisation :

Cette distinction des températures d’eau glacée apportera un gain d’énergie de 3% par degré gagné, soit réciproquement 21% pour le remplacement de l’ancienne production de froid et
entre 12% et 21% (loi d’eau glissante), soit 17% pour la nouvelle production de froid nécessaire à l’extension.

Cette même distinction sur l’eau glacée s’applique pour la température d’eau de refroidissement qui est aujourd’hui de 50/40°C et qui sera descendue avec les nouvelles productions de froid à 35/30°C, ce qui apportera un gain d’énergie de 13,5%.

L’efficacité des compresseurs frigorifiques quant à elle a évolué considérablement, surtout entre une compression à piston et celle à double vis proposée ici qui permet une meilleure efficience énergétique.

Le gain d’énergie apporté par des choix de température et une meilleure technologie des groupes sera d’environ :
- 21% x 13,5%, soit 37,3% pour la production à 13°C.
- 17% x 13,5%, soit 32,8% pour la production à 10°C.

A cela s’ajoute un gain d’énergie du fait de la part couverte en free-chilling et donc de l’arrêt des groupes, d’environ :
- 39% s’ils travaillent en sec, soit 42% avec des aéroréfrigérants adiabatiques pour la production à 13°C qui fonctionnera nuit et jour.
- 25% s’ils travaillent en sec, soit 30% avec des aéroréfrigérants adiabatiques pour la production à 10°C qui ne fonctionnera que de jour.

Sans tenir compte du gain apporté par la modulation de puissance des compresseurs à vis qui est difficile à apprécier, le gain d’énergie serait le suivant :

| La consommation d'énergie électrique pour la production de « froid rafraîchissement » et de « froid climatisation » sera de 17% en plus, alors même que la production de froid va être de 2,3 fois supérieure en puissance par rapport à celle en place. |

A ce gain il aurait été possible d’ajouter celui apporté par le préchauffage de l’eau chaude sanitaire au moyen de la chaleur de réjection des groupes, ce qui représente un gain non négligeable. Mais comme il n’existe pas actuellement de compteurs d’électricité spécifique, il nous est impossible d’estimer la consommation avant et après travaux ainsi que le gain en Euros.

5.2 Gain sur le froid alimentaire

Le remplacement des installations de « froid alimentaire » apportera lui aussi ses propres économies d’énergie. De plus la chaleur de réjection de chaleur de ses groupes permettra de préchauffer l’eau chaude sanitaire et donc dégagera un gain non négligeable. Mais comme il n’existe pas actuellement de compteurs d’électricité spécifique, là aussi il nous est impossible d’estimer la consommation avant et après travaux ainsi que le gain en Euros.
6 DOCUMENTS ANNEXES

6.1 QU’EST-CE QUE LE FREE-CHILLING ?

6.1.1 Définition du free-chilling

Il n’est pas inutile de rappeler en quoi cela consiste, car beaucoup confondent encore le free-chilling (chiller : refroidisseur en anglais) et le free-cooling (cooling : rafraichissant en anglais).

- Le free-chilling est obtenu par un aéroréfrigérant ou une tour de refroidissement qui refroidira l’eau à la place du groupe de production d’eau glacée dans les périodes où l’air sec (et humide dans le cas de la tour ou d’un aéroréfrigérant adiabatique) sera suffisamment froid.
- Le free-cooling est obtenu au moyen d’air frais introduit dans le local de façon naturelle ou mécanique qui viendra compenser l’air chaud que l’on évacuera à l’extérieur.

Lorsque l’on a besoin de froid à des températures extérieures particulièrement froides, plutôt que de mettre en service un groupe à compression ou une machine à absorption de production d’eau glacée, on se servira d’un aéroréfrigérant placé à l’extérieur qui dissipera la chaleur récupérée par les émetteurs. Plus le Δt entre la température extérieure et intérieure sera élevé, plus on produira ainsi de froid en EnR.

Les installations de rafraîchissement ou de climatisation qui recourent habituellement à de l’eau glacée en hiver pour se climatiser, permettront de bien utiliser le potentiel offert par le free-chilling.

Les installations de climatisation avec des échangeurs ou émetteurs à grande surface d’échange se prêtent bien au free-chilling. Dans l’existent, il faudra étudier la possibilité d’adapter les installations (émetteurs, débit d’air et débit d’eau de circuits).

Un échangeur qui reçoit une eau à 10/15°C au lieu de 13/18°C perd environ 36% de sa puissance totale frigorifique (sensible et latente). D’où l’intérêt de surdimensionner les échangeurs thermiques (aéroréfrigérants comme échangeurs à plaques ou encore batteries à air). On pourra aussi augmenter le débit d’air (ventilateur à débit variable sur les aéroréfrigérants) pour augmenter la puissance frigorifique ou encore déclasser l’appareil (aéroréfrigérant).

6.1.2 Jouer avec la météorologie

La température de l’air varie avec l’alternance du jour et de la nuit mais aussi, dans la journée, avec l’ensoleillement. Les bulletins météorologiques indiquent ainsi la température maximale et la température minimale du jour.

Effet des radiations solaires sur la température de l’air

La température est minimale environ 1/2 h
après le lever du soleil. Ce décalage est dû au bilan thermique de la terre. La nuit, la terre émet un rayonnement et se refroidit. Lorsque le soleil se lève, la terre reçoit le rayonnement solaire mais continue à émettre. Ce n’est que 1/2 h après le lever du soleil que le bilan est positif et que la terre commence à se réchauffer.

La température est maximale environ 2 h après la culmination du soleil (moment où le soleil est le plus haut dans le ciel), qui correspond au passage du soleil dans le plan méridien local.

La température extérieure est plus basse la nuit, cette période est propice au free-chilling à cause de l’amplitude diurne et c’est justement dans cette période nocturne que des locaux à l’aide d’émetteurs à basse température permettront d’extraire la chaleur stockée dans la structure du bâtiment de façon à préparer les bâtiments pour le lendemain. Bien souvent, dans cette période nocturne, les aéroréfrigérants n’auront même pas besoin de fonctionner en adiabatique mais seulement en sec.

Le free-chilling qu’il soit réalisé par des aéroréfrigérants fonctionnant à sec ou en adiabatique (humide), produira une bonne partie de l’année le froid nécessaire au rafraîchissement et à la climatisation, tout dépendra de la température extérieure.

![Diagramme psychométrique](image_url)

- Free-chilling sec ou free-cooling
- Free-chilling humide
- Froid thermodynamique

Comme on le voit sur le diagramme psychométrique ci-dessus, on recourra au free-chilling une bonne partie de l’année grâce en partie à la situation de Tourcoing (latitude 50°43’N) qui offre un climat avec un potentiel plus important que des villes dont la latitude seraient plus basse.
LILLE : Climat, températures, précipitations, ensoleillement en cours de semaine

On voit que dans la semaine du 4 mars au 11 mars 2010, les conditions météorologiques étaient réunies pour recourir au free cooling ainsi qu’au free-chilling.

Nota : C’est ce type de prévision météorologique qui nous permettra dans le futur de bien gérer nos climats intérieurs dans nos bâtiments passifs (BEPAS) et à énergie positive (BEPOS).
LILLE : Climat, températures, précipitations, ensoleillement en cours d’année

Températures moyennes

Températures minimum et maximum

Précipitations en mm

Humidité

Ensoleillement

Pour faire de l’eau de refroidissement à 13°C (free-chilling), il faut à l’extérieur une température sèche de 8°C ou une température humide de 10°C.

Lorsque l’on regarde la température extérieure et l’humidité en cours d’année, l’économie d’énergie apportée par le free-chilling est évidente !
6.1.3 Les différents types de free-chilling

Le free-chilling « sec »

Dans cette solution on fera appel à un groupe de production d’eau glacée à condensation par air avec une batterie de free-chilling incorporée.

Un aéroréfrigérant sera raccordé sur le circuit d’eau glacée en injection avec l’évaporateur (la température finale sera régulée par le groupe qui ne se mettra en fonctionnement que si la température souhaitée n’est pas atteinte).

Lorsque l’installation travaillera à charge partielle, il sera préférable que la température de l’eau "glacée" soit la plus haute possible de façon à optimiser l’échange de l’aéroréfrigérant avec l’air extérieur.

On recourra à un aéroréfrigérant à débit variable pour augmenter l’écart de température entre départ et retour.

Le free-chilling couvrira la plus grande partie de la saison de rafraîchissement. Celui-ci devra se faire à l’aide d’émetteurs à grande surface d’échange acceptant une température d’eau froide inférieure seulement de quelques degrés de celle de l’ambiance.
Le free-chilling « humide »

Principe de fonctionnement :

On pourra produire de l’eau froide à une température inférieure de quelques degrés de moins que celle de l’air extérieur ou plus exactement celle de sa température humide. L’eau est refroidie à l’intérieur de l’aéroréfrigérant par l’air extérieur et la machine frigorifique n’a pas besoin d’être mise en service.

La température extérieure est plus basse la nuit (écart diurne), cette période est propice au free-chilling à cause de l’écart diurne et c’est justement dans cette période nocturne que des locaux à l’aide d’émetteurs à basse température permettront d’extraire la chaleur stockée dans la structure du bâtiment de façon à préparer les bâtiments pour le lendemain. Bien souvent, dans cette période nocturne, les aéroréfrigérants n’auront même pas besoin de fonctionner en adiabatique mais seulement en sec.

Le free-chilling qu’il soit réalisé par des aéroréfrigérants fonctionnant à sec ou en adiabatique (humide), produira une bonne partie de l’année le froid nécessaire au rafraîchissement et à la climatisation, tout dépendra de la température extérieure.

L’économie d’énergie est importante et la rentabilité du projet est d’autant plus élevée que les besoins de refroidissement sont importants et que l’installation s’y prête.

La température extérieure étant plus basse la nuit (écart diurne), on pourra d’autant plus recourir au refroidissement nocturne des locaux grâce au free-chilling et aux émetteurs à basse température qui extraîtront la chaleur stockée dans la structure du bâtiment. Bien souvent, dans cette période, les aéroréfrigérants n’auront même pas besoin de fonctionner en adiabatique.

Free-chilling avec fonctionnement alternatif du groupe de production d’eau glacée ou de l’aéroréfrigérant - Doc. A. GARNIER

Niveau de confort à en attendre :

Avec une surface d’émetteurs satisfaisante on est en droit d’espérer pouvoir descendre de 4°C par rapport au pic de la température extérieure qui a lieu environ 1h ½ avant, compte-tenu de l’inertie thermique. Soit une température intérieure maintenue à 26°C le jour quand il fait 30°C à l’extérieur, ce qui en fait un excellent moyen de rafraîchissement à basse d’EnR.

Nous aurons alors le choix entre deux solutions de « free-chilling » :

• Un free-chilling adiabatique avec un fonctionnement bivalent et un fonctionnement continu, ce qui nous permettrait d’arriver au gain d’énergie ci-dessous :

 Taux de couverture de 60% du free-chilling adiabatique avec une température d’eau de 13/18°C et un fonctionnement en continu.
 • Adiabatique en sec
Adiabatique en humide

Groupe de froid

• Un free-chilling sec + fonctionnement alternatif, on pourra espérer arriver au gain d'énergie ci-dessous ; ce qui n’est déjà pas si mal par rapport aux installations classiques :

La latitude et le type de climat sont des facteurs importants qui influencent le gain d’énergie.

Les différents modes de fonctionnement

Fonctionnement alternatif (le seul utilisé actuellement) :

- L’aéroréfrigérant permettant le free-chilling sera utilisé une bonne partie de l’hiver et de la demi-saison. A partir du moment où la température extérieure ne le permettra plus, il sera réaffecté à la dissipation de la chaleur de réjection du groupe à compression ou de la machine à absorption de production d’eau glacée.

Froid thermodynamique ou **free-chilling**

L’économie d'énergie sera importante et la rentabilité du projet sera d’autant plus élevée que les besoins de refroidissement seront importants et que la surface d'échange des émetteurs s’y prêtera.

Fonctionnement bivalent (notre innovation) :

- L’aéroréfrigérant permettant le free-chilling sera utilisé une bonne partie de l’hiver et de la demi-saison de façon à se servir au maximum de la potentialité du free-chilling. Il n’est
donc plus question de « commuter » entre free-chilling et froid thermodynamique. Tous deux sont mis à contribution en même temps avec une priorité free-chilling et un appoint ou pas en froid thermodynamique.

Exemple 1 : Free-chilling avec complément en froid thermodynamique au moyen d’1 seul groupe de production d’eau glacée en demi-saison

Dans cette configuration on devra disposer de deux aéroréfrigérants.
Ainsi on pourra être amené à climatiser grâce au free-chilling dans un premier temps puis en froid thermodynamique dans un second.

A partir du moment où la température extérieure ne le permettra plus, la dissipation de la chaleur de réjection du groupe à compression ou de la machine à absorption de production d’eau glacée sera effectuée par l’aéroréfrigérant approprié ou mieux encore au moyen des deux aéroréfrigérants ce qui permettra d’augmenter la surface d’échange et donc d’augmenter l’efficience énergétique de la production de froid.

Nota : Un échangeur à plaques sera nécessaire entre les deux circuits, de réjection d’une part et de free-chilling d’autre part. On devra prévoir un pincement faible de l’ordre de 1 à 2°C maximum pour ne pas perdre une partie de l’intérêt de cette solution.

Cette solution de froid EnR est prometteuse et on se demande bien pourquoi on ne l’utilisait pas jusqu’alors ...

A partir du moment où la température extérieure ne le permettra plus, la dissipation de la chaleur de réjection du groupe à compression ou de la machine à absorption de production d’eau glacée sera effectuée par l’aéroréfrigérant approprié ou mieux au moyen des deux aéroréfrigérants ce qui permettra d’augmenter la surface d’échange et donc d’augmenter l’efficience énergétique de la production de froid.

Nota : Un échangeur à plaques sera nécessaire entre les deux circuits de réjection et free-chilling d’autre part. On devra prévoir un pincement faible de l’ordre de 1 à 2°C maximum pour ne pas perdre une partie de l’intérêt de cette solution.

Exemple 2 : Free-chilling avec complément en froid thermodynamique mais cette fois-ci au moyen de 2 groupes dont 1 seul fonctionnera en demi-saison
Dans cette configuration on disposera de deux aéroréfrigérants pour 2 groupes.
Ainsi on pourra réaliser toutes les combinaisons possibles : free-chilling + froid thermodynamique (schéma), free-chilling seul, froid thermodynamique seul (voir la suite).

Exemple 3 : Free-chilling seul, en hiver et en début de demi-saison (plus de 60% de l’année)

La température extérieure étant plus basse la nuit (écart diurne), on pourra d’autant plus recourir au refroidissement nocturne des locaux grâce au free-chilling et aux émetteurs à basse température, lesquels permettront d’extraire la chaleur stockée dans la structure du bâtiment.

Exemple 4 : Froid thermodynamique seul au moyen des 2 groupes d’eau glacée en été
Sources et liens