

# TA-FUSION-C

- NPT threads/ANSI flanges



# Combined control & balancing valves

With independent EQM characteristics





# TA-FUSION-C

# - NPT threads/ANSI flanges

These innovative balancing and control valves for heating and cooling systems combine the key hydronic functions of balancing and control in one valve. Adjustable Kvs and inherent independent EQM characteristics allow correct valve sizing and optimum system controllability. The measuring points enable accurate measurement of flow, differential pressure, temperature and available differential pressure.

# **Key features**

characteristic

- Adjustable Kvs Allows correct Kvs setting corresponding to system
- requirements.

  > Independent, inherent EQM

Proper EQM valve characteristic for all settings.

Self-sealing measuring points Simple and accurate measurement for balancing, trouble shooting and power measurement.



# **Technical description**

#### **Application:**

Heating and cooling systems.

# **Functions:**

Control (EQM)

Balancing

Pre-setting (Kvs)

Measuring ( $\Delta$ pV,  $\Delta$ H, T, q)

Shut-off (for isolation during system

maintenance)

#### **Dimension:**

DN 32-150

#### Pressure class:

DN 32-50: PN 16

DN 65-150: PN 16 and PN 25

# Max. differential pressure ( $\Delta pV_{max}$ ):

400 kPa = 4 bar

 $\Delta pV_{\text{max}}$  = The maximum allowed pressure drop over the valve to fulfill all stated performances.

# Recommended setting range (Kv<sub>max</sub>):

DN 32: 2,68 - 12,9

DN 40: 3,03 - 18,5

DN 50: 8,03 - 33,0

DN 65-2: 24,3 - 64,3

DN 80-2: 38,1 - 100

DN 100: 57,4 - 160

DN 125: 97,4 - 270

DN 150: 146 - 400

 $Kv_{max} = m^3/h$  at a pressure drop of 1 bar at each setting and fully open valve plug.

## Lift:

20 mm

# Rangeability:

>100 (for all recommended settings)

# Leakage rate:

Tight sealing

## **Characteristics:**

Independent EQM.

#### Temperature:

Max. working temperature: 120°C Min. working temperature: -20°C

#### Media:

Water or neutral fluids, water-glycol

(For other media contact IMI Hydronic Engineering.)

#### Material:

DN 32-50:

Valve body: AMETAL®

Valve plug: AMETAL®

Seat seal: EPDM/Stainless steel

Spindle seal: EPDM O-ring

O-rings: EPDM

Valve insert: AMETAL®/PPS/PTFE

Springs: Stainless steel Spindle: Stainless steel

DN 65-150:

Valve body: Ductile iron EN-GJS-400

Valve plug: Stainless steel Seat seal: EPDM/Stainless steel

O-rings: EPDM

Plug mechanism: Stainless steel and

brass

Screws and nuts: Stainless steel

AMETAL® is the dezincification resistant alloy of IMI Hydronic Engineering.



#### Surface treatment:

DN 32-50: Non treated

DN 65-150: Electrophoretic painting.

## Marking:

DN 32-50: TAH, IMI, DN, PN, DR, serial No and flow direction arrow.

DN 65-80: TAH, IMI TA, DN, PN, Kvs,  $T_{\rm min}/_{\rm max}$ , serial No, valve body material and flow direction arrow, label.

DN 100-150: IMI TA, IMI, DN, PN, Kvs,  $\rm T_{min}/_{max}$  , serial No, valve body material and flow direction arrow, label.

CE-marking: DN 65-125: CE

DN 150: CE 0062 \*

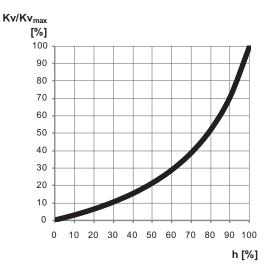
\*) Notified body.

#### Connection:

DN 32-50: Pipe threads NPT according to ANSI/ASME B1.20.1-1983. Complete thread according to ANSI B16.15-1985. DN 65-150: Flanges according ASME 7 ANSI B16.42 Class 150.

#### **Actuators:**

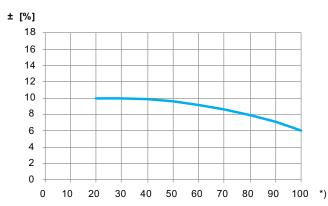
TA-Slider 750


TA-Slider 1250

TA-MC100 FSE/FSR (fail-safe)

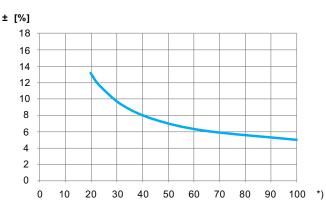
For more details on actuators, see separate technical leaflets.

# **Valve characteristics**


Nominal valve characteristic for all recommended settings.



# **Measuring accuracy**


# Maximum flow deviation at different settings





# \*) Setting (%) of fully open valve.

## DN 65-150



# **Correction factors**

The flow calculations are valid for water ( $\pm 20^{\circ}$ C). For other liquids with approximately the same viscosity as water ( $\pm 20^{\circ}$ CSt =  $3^{\circ}$ E=100S.U.), it is only necessary to compensate for the specific density. However, at low temperatures, the viscosity increases and laminar flow may occur in the valves. This causes

a flow deviation that increases with small valves, low settings and low differential pressures. Correction for this deviation can be made with the software HySelect or directly in our balancing instruments.

# **Noise**

In order to avoid noise in the installation the flows must be correctly balanced and the water de-aerated.

Very high differential pressures can cause noise in the installations, and in that case, differential pressure controllers should be used.

The maximum recommended pressure drop in order to avoid excessive noise is 200 kPa.

# **Sizing**

When  $\Delta pV$  and flow are known, use the formula to calculate  $\text{Kv}_{\mbox{\tiny max}}.$ 

$$Kv = 0.01 \frac{q}{\sqrt{\Delta p}}$$
 q I/h,  $\Delta p$  kPa

$$Kv = 36 \frac{q}{\sqrt{\Delta p}}$$
 q l/s,  $\Delta p$  kPa

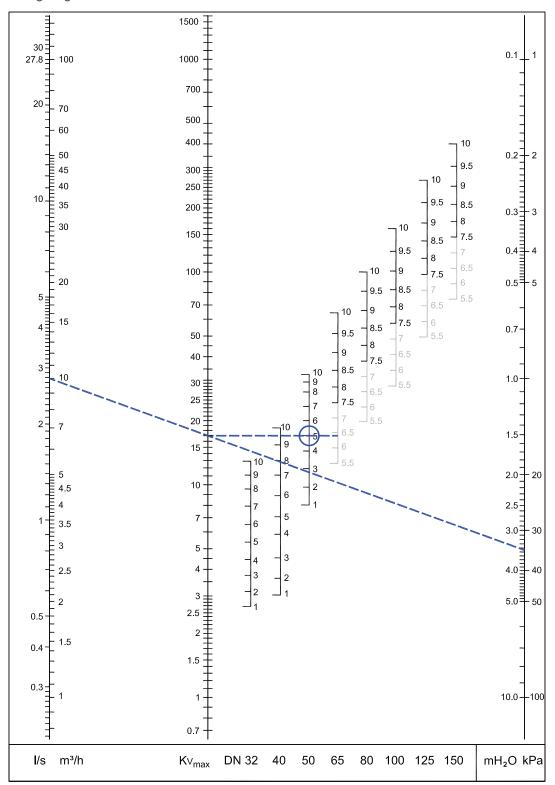
# **Example**

Flow is 10 m $^3$ /h,  $\Delta$ pV is 35 kPa and control signal (input signal) 0-10 VDC, supply voltage 24 VAC.

- 1. Go to sizing diagram. (When calculating the  $Kv_{max}$  by the formula go directly to step 4).
- 2. Draw a straight line between 10 m³/h and 35 kPa.
- 3. Read the needed  $Kv_{max}$  value where the line crosses the Kv-axis. In this case  $Kv_{max}$ =16,9.
- 4. Draw a horizontal line from  $Kv_{max}$  16,9, which will cross the setting bars for all valves which fit the application. In this case DN 40 setting 9,5, DN 50 setting 5,0.
- 5. Choose the smallest option (with some safety margin). In this case DN 50 is preferable. See "Articles Valves".
- 6. Go to "Selection of actuator" to select the actuator. In this case TA-Slider 750, article number 322226-10110.

#### Note

If the required flow falls outside the scale of the diagram, the reading can be made as follows: Use the design  $\Delta pV$  and draw the line to a flow that is 0,1 or 10 times the design flow, getting  $Kv_{max}$  in the same relation (either 0,1 or 10 times needed). Following the previous example


35 kPa and 10 m<sup>3</sup>/h gives Kv<sub>max</sub>=16,9

35 kPa and 1 m<sup>3</sup>/h gives Kv<sub>mav</sub>=1,69

35 kPa and 100 m<sup>3</sup>/h gives Kv<sub>max</sub>=169



# Sizing diagram



DN 65-150: Recommended setting range 7.5–10 (≈40–100% of Kvs).

# **Kv**<sub>max</sub> values

|       |      | Positions |      |      |      |      |      |      |      |      |  |
|-------|------|-----------|------|------|------|------|------|------|------|------|--|
|       | 1    | 2         | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |  |
| DN 32 | 2,68 | 3,15      | 3,75 | 4,45 | 5,37 | 6,51 | 7,93 | 9,55 | 11,1 | 12,9 |  |
| DN 40 | 3,03 | 3,63      | 4,53 | 5,70 | 7,07 | 8,88 | 11,1 | 13,0 | 15,4 | 18,5 |  |
| DN 50 | 8,03 | 9,74      | 11,9 | 14,4 | 17,0 | 20,0 | 23,3 | 27,3 | 30,4 | 33,0 |  |

|         | Positions |      |      |      |      |      |      |      |      |      |
|---------|-----------|------|------|------|------|------|------|------|------|------|
|         | 5.5       | 6    | 6.5  | 7    | 7.5  | 8    | 8.5  | 9    | 9.5  | 10   |
| DN 65-2 | 12,6      | 14,9 | 17,6 | 20,6 | 24,3 | 28,8 | 34,5 | 41,8 | 51,4 | 64,3 |
| DN 80-2 | 19,8      | 23,2 | 27,4 | 32,2 | 38,1 | 45,2 | 54,5 | 65,9 | 81,2 | 100  |
| DN 100  | 29,1      | 34,5 | 40,9 | 48,4 | 57,4 | 68,6 | 82,6 | 101  | 125  | 160  |
| DN 125  | 49,5      | 58,6 | 69,4 | 82,1 | 97,4 | 116  | 140  | 170  | 212  | 270  |
| DN 150  | 74,5      | 88,1 | 104  | 123  | 146  | 173  | 208  | 253  | 314  | 400  |

DN 65-150: Recommended setting range 7.5–10 (≈40–100% of Kvs).

 $Kv_{max} = m^3/h$  at a pressure drop of 1 bar at each setting and fully open valve plug.

# **Selection of actuator**

|                |                      | TA-Slider 750 | TA-Slider 1250 | TA-MC100 FSE | TA-MC100 FSR |
|----------------|----------------------|---------------|----------------|--------------|--------------|
| Input signal   | 0(2)-10 VDC          | √             | <b>√</b>       | J            | V            |
|                | 0(4)-20 mA           | √             | √              | √            | √            |
|                | 3-point              | √             | √              | √            | √            |
| Output signal  | 0(2)-10 VDC          | √             | √              | √            | √            |
|                | 0(4)-20 mA           |               |                | √            | √            |
| Supply voltage | 24 VAC               | √             | √              | √            | √            |
|                | 24 VDC               | √             | √              |              |              |
|                | 100-240 VAC          | √             | √              |              |              |
|                | 230 VAC              |               |                | √            | √            |
| Fail-safe      | Extending (closing)  |               |                | √            |              |
|                | Retracting (opening) |               |                |              | √            |
| For valve      |                      | DN 32-125     | DN 150         | DN 32-150    | DN 32-150    |

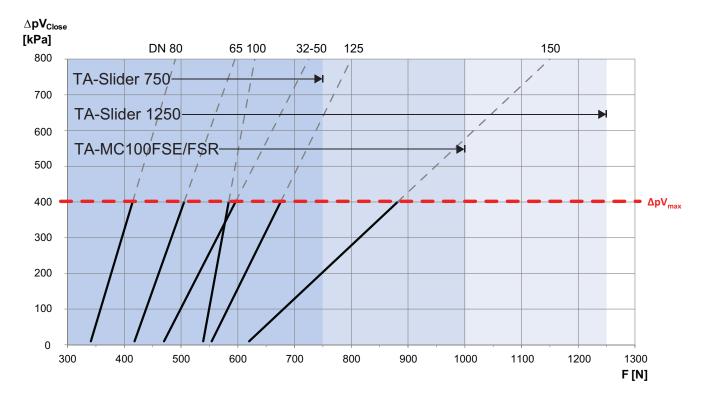
Article number can be found under "Articles - Actuators".

For more variants and details on actuators, see separate technical leaflets or contact IMI Hydronic Engineering.

# Maximum recommended pressure drop ( $\Delta$ pV) for valve and actuator combination

The maximum recommneded pressure drop over the valve and actuator combination for close off ( $\Delta pV_{close}$ ) and to fulfill all stated performances ( $\Delta pV_{max}$ ). For detailed information on maximum closing off pressure, see "Closing force".

 $\Delta pV_{close}$  = The maximum pressure drop that the valve can close against from an opened position, with a specified force (actuator) without exceeding stated leakage rate.


 $\Delta pV_{\text{max}}$  = The maximum allowed pressure drop over the valve to fulfill all stated performances.

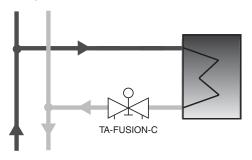
| DN  | TA-Slider 750 | TA-Slider 1250 | TA-MC100<br>FSE/FSR |
|-----|---------------|----------------|---------------------|
|     | [kPa]         | [kPa]          | [kPa]               |
| 32  | 400           | _              | 400                 |
| 40  | 400           | _              | 400                 |
| 50  | 400           | _              | 400                 |
| 65  | 400           | _              | 400                 |
| 80  | 400           | _              | 400                 |
| 100 | 400           | _              | 400                 |
| 125 | 400           | _              | 400                 |
| 150 | 200           | 400            | 400                 |



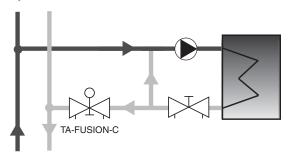
# **Closing force**

Necessary force (F) to close the valve versus the differential pressure ( $\Delta pV_{close}$ ), without exceeding stated leakage rate.




 $\Delta pV_{close}$  = The maximum pressure drop that the valve can close against from an opened position, with a specified force (actuator) without exceeding stated leakage rate.

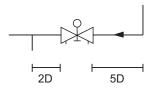
 $\Delta pV_{max}$  = The maximum allowed pressure drop over the valve to fulfill all stated performances.

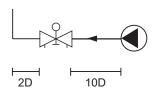

# Installation

# **Application examples**

2-way direct circuit



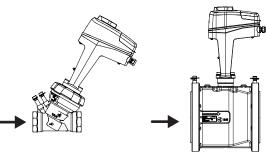

Injection circuit




# Normal pipe fittings

Avoid mounting taps and pumps immediately before or after the valve.

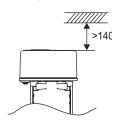
Installation recommendation for accurate measurement due to distortion of fully developed turbulent flow profile.






# Flow direction

DN 32-50






## Installation of actuator

Approx. 140 mm of free space is required above the actuator.





# Ingress protection

IP54

**Note:** Read carefully the installation instruction of the actuator.

# TA-Slider 750/TA-Slider 1250

DN 32-50









DN 65-150









## TA-MC100FSE/FSR

DN 32-50





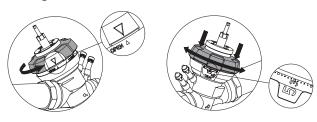




DN 65-150

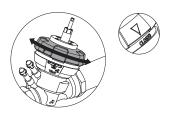












# **Operating function DN 32-50**

#### **Setting**

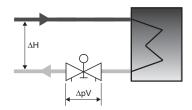


- 1. Open the valve fully with the handwheel.
- 2. Press the handwheel downwards and turn to desired value, e.g. 5.3.

## Shut-off



1. Turn the handwheel to "Closed".


Turn the handwheel to "Open" when re-opening the valve.

#### Measuring $\Delta pV$ and q

Connect IMI Hydronic Engineering balancing instrument to the measuring points. Input the valve type, size and setting and the actual flow is displayed.

#### Measuring **AH**

Connect IMI Hydronic Engineering balancing instrument to the measuring points. Close the valve according to "Shut-off" and measure. **Important!** The valve must be re-opened **fully** after the measurement is completed.




## NOTE!

Ensure that the actuator is disengaged from the valve spindle during all operating functions described above.

# **Operating function DN 65-150**

#### Setting



- 1. Release the fixing nut.
- 2. Turn the setting screw to desired value on the scale, e.g. 9.2.
- 3. Tighten the fixing nut.

# Shut-off

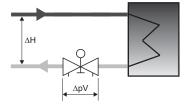






- 1. Release the fixing nut.
- 2. Turn the setting screw clockwise to stop (position 0  $\pm$ 0.5). The presetting is visible on the setting scale.
- 3. Tighten the fixing nut.

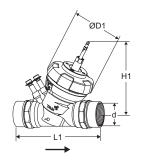
Open to **previous setting** when re-opening the valve.


# Measuring $\Delta pV$ and q

Connect IMI Hydronic Engineering balancing instrument to the measuring points. Input the valve type, size and setting and the actual flow is displayed.

# Measuring $\Delta H$

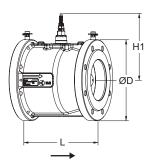
Connect IMI Hydronic Engineering balancing instrument to the measuring points. Close the valve according to "Shut-off" and measure.


**Important!** The valve must be re-opened to **previous setting** after the measurement is completed.



#### NOTE

Ensure that the actuator is disengaged from the valve spindle during all operating functions described above.


# **Articles - Valves**



#### Female thread

Pipe threads NPT according to ANSI/ASME B1.20.1-1983. Complete thread according to ANSI B16.15-1985.

| DN    | (size) | d         | D1  | L1  | H1  | Kvs  | Kg  | EAN           | Article No   |
|-------|--------|-----------|-----|-----|-----|------|-----|---------------|--------------|
| PN 16 |        |           |     |     |     |      |     |               |              |
| 32    | 1 1/4" | 1 1/4 NPT | 128 | 213 | 186 | 12,9 | 3,9 | 7318794005006 | 22106-002032 |
| 40    | 1 1/2" | 1 1/2 NPT | 128 | 219 | 186 | 18,5 | 4,1 | 7318794005105 | 22106-002040 |
| 50    | 2"     | 2 NPT     | 128 | 229 | 190 | 33,0 | 4,8 | 7318794005204 | 22106-002050 |



## **Flanged**

Flanges according to ASME 7 ANSI B16.42 Class 150.

| DN    | (size)   | D   | L   | H1  | Kvs  | Kg | EAN           | Article No   |
|-------|----------|-----|-----|-----|------|----|---------------|--------------|
| Class | 150      |     |     |     |      |    |               |              |
| 65-2  | 2 1/2"-2 | 180 | 190 | 205 | 64,3 | 17 | 5901688827512 | 22106-001065 |
| 80-2  | 3"-2     | 190 | 203 | 205 | 100  | 21 | 5901688827543 | 22106-001080 |
| 100   | 4"       | 230 | 229 | 221 | 160  | 27 | 3831112527874 | 22106-001100 |
| 125   | 5"       | 255 | 254 | 221 | 270  | 37 | 3831112527904 | 22106-001125 |
| 150   | 6"       | 280 | 267 | 251 | 400  | 50 | 3831112527935 | 22106-001150 |

 $\rightarrow$  = Flow direction

# **Articles - Actuators**

# TA-Slider 750, TA-Slider 1250, TA-MC100FSE/FSR

**DN 65-150:** Adapter for actuator to be ordered separately.

For more variants and details on actuators, see separate technical leaflets or contact IMI Hydronic Engineering.

| Туре           | Supply voltage | Valve DN | EAN           | Article No   |
|----------------|----------------|----------|---------------|--------------|
| TA-Slider 750  | 24 VAC/VDC     | 32-125   | 5901688828458 | 322226-10110 |
| TA-Slider 750  | 100-240 VAC    | 32-125   | 5902276883620 | 322226-40110 |
| TA-Slider 1250 | 24 VAC/VDC     | 150      | 5901688828533 | 322227-10110 |
| TA-Slider 1250 | 100-240 VAC    | 150      | 5902276883828 | 322227-40110 |
|                |                |          |               |              |
| TA-MC100FSE    | 24 VAC         | 32-150   | 3831112512122 | 61-100-101   |
| TA-MC100FSE    | 230 VAC        | 32-150   | 3831112512139 | 61-100-102   |
| TA-MC100FSR    | 24 VAC         | 32-150   | 3831112512146 | 61-100-201   |
| TA-MC100FSR    | 230 VAC        | 32-150   | 3831112512153 | 61-100-202   |
|                |                |          |               |              |

#### TA-Slider 750 Plus / TA-Slider 1250 Plus

The Plus version has the following additional functions;

- Binary input, relays, output signal in mA
- BUS communication (with or without binary input, relays, output signal in mA)

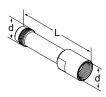
For more variants and details on actuators, see separate technical leaflets or contact IMI Hydronic Engineering.



# **Adapters for actuators**

|                               | Valve DN | EAN           | Article No   |
|-------------------------------|----------|---------------|--------------|
| For recommended actuators     |          |               |              |
| TA-Slider 750                 | 32-50    |               | *)           |
| TA-Slider 750, TA-Slider 1250 | 65-150   | 3831112529748 | 22413-001055 |
| TA-MC100FSE/FSR               | 32-50    |               | *)           |
| TA-MC100FSE/FSR               | 65-150   | 3831112529748 | 22413-001055 |
| For other actuators           |          |               |              |
| Hora MC55, MC100              | 32-50    |               | *)           |
| Hora MC55, MC100              | 65-150   | 3831112529748 | 22413-001055 |
| Hora MC160                    | 65-150   | 3831112527751 | 22413-001160 |
| Hora MC253                    | 65-150   | 3831112527973 | 22413-101253 |
| JC VA1125-GGA-1               | 32-50    | 3831112531635 | 22412-000001 |
| JC VA1125-GGA-1               | 65-150   | 3831112531628 | 22413-000001 |
| JC VA7810-GGA-12              | 32-50    | 3831112531642 | 22412-000002 |
| JC VA7810-GGA-12              | 65-150   | 3831112531659 | 22413-000002 |
| Sauter AVM322                 | 32-50    | 3831112532342 | 22412-000004 |
| Sauter AVM322                 | 65-150   | 3831112532359 | 22413-000004 |
| Sauter AVM234, AVN, AVF       | 32-50    | 3831112531680 | 22412-000003 |
| Sauter AVM234, AVN, AVF       | 65-150   | 3831112512214 | 22413-000003 |
| Siemens SAX, SQV91            | 32-50    | 3831112531611 | 22214-000002 |
| Siemens SAX, SQV91            | 65-150   | 3831112530928 | 22214-000001 |

<sup>\*)</sup> Integrated in the valve.


# Accessories



# Measuring point

AMETAL®/EPDM

| d         | L   | EAN           | Article No |
|-----------|-----|---------------|------------|
| DN 32-50  |     |               |            |
| M14x1     | 44  | 7318792813207 | 52 179-014 |
| M14x1     | 103 | 7318793858108 | 52 179-015 |
| DN 65-150 |     |               |            |
| 3/8       | 47  | 7318792813009 | 52 179-008 |
| 3/8       | 103 | 7318792814501 | 52 179-608 |



# Extension for measuring point M14x1

Suitable when insulation is used. AMETAL®

For DN 32-50.

| d     | L  | EAN           | Article No |
|-------|----|---------------|------------|
| M14x1 | 71 | 7318793969507 | 52 179-016 |



# Measuring point, extension 60 mm

Can be installed without draining of the system.

AMETAL®/Stainless steel/EPDM For all dimensions.

| L  | EAN           | Article No |
|----|---------------|------------|
| 60 | 7318792812804 | 52 179-006 |

# Insulation

See related insulation instruction under "Products" on www.imi-hydronic.com or contact IMI Hydronic Engineering.

