

Domaine d'application

La modélisation de ce système est basée sur le Titre V relatif à la prise en compte du «Générateur Hybride» dans la RT 2012 (arrêté du 13 août 2015).

Le titre V s'applique uniquement aux maisons individuelles ou accolées soumises aux exigences de l'arrêté du 26 octobre 2010. Il ne s'applique qu'aux générateurs hybrides associés à des radiateurs à eau chaude et/ou à des planchers chauffants sur vecteur eau

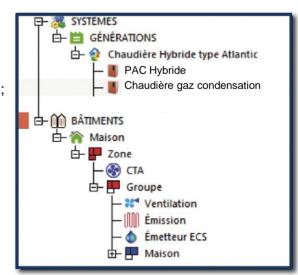
Il concerne les générateurs hybrides composés de :

- une PAC électrique A/E de puissance utile nominale inférieure à 5 kW à 7/35 ;
- une chaudière à condensation :
- un système de régulation permettant une commutation entre les deux générateurs en fonction de leurs performances en énergie primaire.

Présentation

Le présent document décrit la saisie et la prise en compte de la chaudière hybride Hysaé d'ATLANTIC dans le logiciel d'application de la RT 2012 de ClimaWin. Seule la saisie de la «génération chauffage & ECS» est décrite ; un focus spécifique sur la saisie du circulateur est également réalisé.

La chaudière hybride Hysaé est composée des éléments suivants :


Chaudière à condensation	Chaudière gaz à condensation Hysaé Hybrid gaz
Pompe à chaleur électrique	Pac à compression électrique air/eau Inverter Fujitsu

L'ensemble du système est décrit dans un objet **«génération»** (**1**). Cet objet contient les éléments suivants :

- un «générateur» décrivant les caractéristiques de la pompe à chaleur (| |);
- un «générateur» décrivant les caractéristiques de la chaudière gaz à condensation (!) ;

Les étapes de la saisie du système sont les suivantes :

- étape 1 : création de l'objet génération «Chaudière hybride Hysaé» ;
- étape 2 : création du générateur «PAC (fonction chauffage)» ;
- étape 3 : création du générateur «Chaudière gaz à condensation» ;

Création de l'objet génération «Chaudière hybride Hysaé»

Caractéristique	Valeurs
Appellation	CHAUDIERE HYBRIDE
Mode de fonctionnement	Générateurs en cascade
Raccordement générateurs entre eux	Avec isolement
Raccordement réseaux distribution	Avec possibilité d'isolement
Emplacement production	En volume chauffé
Emplacement	BATIMENT A
Distributions intergroupes	Distributions hydrauliques individuelles
Gestion de température en chauffage	Température moyenne réseaux distribution
Gestion température en refroidissement	Pas de fonction climatisation
Production ECS instantanée	ECS Instantanée

On sollicite les générateurs par ordre de priorité jusqu'à la limite de leur puissance utile.

Un emplacement en volume chauffé permet de réduire les consommations d'environ 11 % (par rapport à un emplacement hors volume chauffé).

Création du générateur «PAC» (fonction chauffage)

Caractéristique	Valeurs
Appellation	PAC Hybrid Hysaé
Type de composant	Générateur catalogué
Lien catalogue	PAC Atlantic Chauffa
Nombre identiques	1
Indice de priorité	1
Source amont Air du générat eur	Air extérieur
Puissances ventilateurs sur ai gainées	0.0 W

Caractéristique	Valeurs	
Énergie	Électrique	
Système thermodynamique chauffage	Pac air/eau	
Statut des données	Valeurs certifiées ou mesurées	
Températures aval chauffage	32.5 ° C	
Températures amont chauffage	-7° C, 7° C	
COP	Cf. tableau matrice des performances P6	
Puissances absorbées	Cf. tableau matrice des puis. absorbées P6	
Indicateurs de certification	Cf. tableau indicateurs de certif. P6	
Limite temp. sources	Sur l'une et l'autre des températures	
Température maximale aval	100.00 ° C ←	
Température minimale amont		
Fonctionnement à charge réelle	Valeur déclarée	
Fonct. compresseur charge réelle	Mode continu du compresseur ou en cycle	
Statut fonct. continu	Valeur par défaut	
Typologie des émetteurs en chaud	Radiateurs, plafonds d'inertie moyenne	
Statut part élec. aux	Valeur certifiée	
Part puiss. élec. aux. chaud	0.000	

Les paramètres «Limite temp. sources», «Température maximale aval» et «Température minimale amont» caractérisent la régulation sur énergie primaire du produit.

Ce paramètre n' intervient pas dans le système de régulation (Valeurs figée à 100 ° C => cf. titre V).

La température limite amont dépend de la température départ chauffage :

		Emetteurs	
Température départ	35° C	45° C	55° C
Température minimale amont	-3,7° C	-2,7° C	-1,7° C

Valeur issue du titre V RT 2012 ; la totalité des consommations des auxiliaires de génération est regroupée au niveau de la chaudière.

Création du générateur «PAC» (fonction chauffage)

Matrice des coefficient de performance COP					
	-15 °C	-7 °C	2 °C	7 °C	20 °C
23,5 °C	0	0	0	0	0
32,5 °C	0	2,84	0	4,34	7 0
42,5 °C	0	2,2	0	3,28	0
51 °C	0	0	0	0	0
60 °C	0	0	0	0	0

Matrice des puis	Matrice des puissances absorbées					
	-15 °C	-7 °C	2 °C	7 °C	20 °C	
23,5 °C	0	0	0	0	0	
32,5 °C	0	0,65	0	0,68	0	
42,5 °C	0	0,76	0	0,82	0	
51 °C	0	0	0	0	0	
60 °C	0	0	0	0	0	

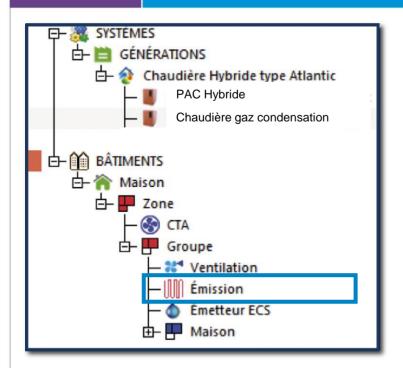
Matrice des indicateurs de certification					
	-15 °C	-7 °C	2 °C	7 °C	20 °C
23,5 °C	0	0	0	0	0
32,5 °C	0	1	0	1	0
42,5 °C	0	0	0	1	0
51 °C	0	0	0	0	0
60 °C	0	0	0	0	0

Certificat NF PAC NF 414-664 consultable sur le site www.certita.org.

La valeur «pivot» à fournir systématiquement par l'utilisateur est la valeur pour
Température amont (Tam) = 7° C et
Température aval (Tav) = 30/35° C.

Création du générateur «Chaudière gaz à condensation»

<i>></i>	Caractéristique	Valeurs
1	Appellation	Chaudière hybride Hysaé
2	Type de composant	Générateur catalogué
19	Lien catalogue	Chaudière hybride Hysaé
31	Nombre identiques	1
32	Indice de priorité	2
33	Indice de priorité en ECS	2


Caractéristique	Valeurs	
Puissance nominale en chaud	12 kW	
Puissance intermédiaire	3,6 kW	
Type de chaudière ou de PAC	Chaudière condensation	
Type d'énergie	Gaz	
Ventilateur du côté combustion	Ventilateur présent	
Certif. rendement 100% Pn	Valeur certifiée	
Rendement à charge 100% Pn	96 %	
Certif. rendement part.	Valeur certifiée	
Rendement charge partielle	108 %	
Certification pertes à l'arrêt	Valeur mesurée	
Pertes à l'arrêt	87 W	
Conso élec auxiliaires à Pn	55 W	
Puiss. électr. à charge nulle	13,6 W ←	
Certification temp. mini fonc.	21° C	
Certification temp. maxi fonc.	Valeur par défaut	
Présence ballon d'eau intégré	Générateur sans ballon	
Cogénération	Pas de module de cogénération	

La chaudière gaz à condensation assure une partie des besoins de chauffage (seule ou en complément de la PAC) et la totalité des besoins en ECS.

La puissance électrique de veille à saisir dans la partie chaudière est la puissance de veille du générateur hybride à charge nulle dans son ensemble (PAC + chaudière).

La saisie du circulateur du réseau de distribution

Dans l'objet «**Emission**» (): on indique la présence du circulateur et la puissance de ce dernier.

62	Gestion système de chauffage	Temp. de départ en fct de temp. extérieur
63	Mode de régulation de fonctionnement	Régulation à débit variable
65	Mode régulation du circulateur	Vitesse et pression différentielle variables
67	Puissance circulateurs en chauffage	24 W

Focus sur la saisie des circulateurs

Ce circulateur représente le système permettant la circulation de l'eau chaude dans le réseau hydraulique de chauffage.

Attention, la documentation technique de certaines chaudières hybrides mentionne la présence de plusieurs circulateurs :

1. Le circulateur de l'unité extérieure

- il est pris en compte dans le COP de la PAC, il ne faut donc pas le considérer dans les auxiliaires de distribution

2. Le circulateur dédié au fonctionnement interne de la chaudière

- il doit être saisi comme faisant partie des auxiliaires électriques de la chaudière (car il ne fonctionne que lorsque la chaudière fonctionne).

3. Le circulateur dédié au réseau de chauffage commun à la PAC et à la chaudière

Ce circulateur est à saisir au niveau du réseau de distribution :

- pour des circulateurs à multivitesse réglable manuellement, la puissance du circulateur à saisir est la moyenne des puissances des différentes vitesses.
- pour des circulateurs à vitesse variable, la puissance du circulateur à saisir est la moyenne entre la puissance maximale et minimale.

