CESI Classique

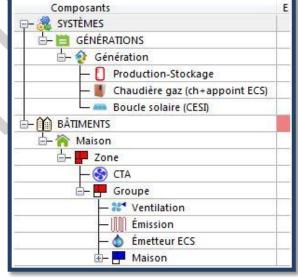
Fiche d'intégration dans le logiciel RT2012 : ClimaWin de BBS Slama

Version 4.1.5.3 du 27/05/2013

Présentation

Le présent document décrit la saisie et la prise en compte d'une chaudière à condensation avec un chauffe eau solaire dans le logiciel d'application de la RT 2012 ClimaWin.

La Chaudière à condensation + CESI est composée des éléments suivants :


- Une chaudière à condensation
- Un ballon de stockage
- Des capteurs solaires

L'ensemble du système est décrit dans un objet « génération » (🍨). Cet objet contient les éléments suivants :

- Un « générateur » décrivant les caractéristiques de la chaudière à condensation ()
- Un « ballon de stockage » décrivant les caractéristiques du ballon de stockage et du système solaire (🔲)
- Une « boucle solaire » décrivant les caractéristiques de la boucle solaire ()

Les étapes de la saisie du système sont les suivantes :

- Etape 1 : Création de l'objet génération « Génération »
- Etape 2 : Création du générateur « Chaudière gaz à condensation »
- Etape 3 : Création de l'objet boucle solaire « Boucle solaire (CESI) »
- **Etape 4** : Création du système de stockage « Production Stockage »
- **Etape 5** : Création du « Circulateur du réseau de distribution de groupe »

Etape n°1: Création de l'objet génération « Génération »

3	Caractéristique	Valeurs
1	Appellation	Génération
2	Mode de fonctionnement	Générateurs en cascade
3	Raccordement générateurs entre eux	Avec isolement
4	Raccordement réseaux distribution	Avec possibilite d'isolement
5	Emplacement production	
7	Emplacement	
8	Réseaux intergroupes	Distributions hydrauliques individuelles
9	Gestion de température en chauffage	Température moyenne réseaux distribution
11	Gestion température en refroidissement	Pas de fonction climatisation
13	Production ECS instantanée	Pas d'ECS instantanée
14	Température de fonctionnement ECS instantanée	

Générateur en cascade si présence d'un ballon ECS.

Un générateur isolé hydrauliquement de la génération présente moins de pertes de l'ordre de 1%.

Un emplacement en volume chauffé permet de réduire les consommations d'environ 5% (par rapport à un emplacement hors volume chauffé).

Un fonctionnement à la température moyenne permet de réduire les consommations de chauffage d'environ 10 %.

Ne concerne que les générateurs ECS instantanés (n'intervient pas dans le calcul sinon).

Etape n°2: Création du générateur « Chaudière gaz à condensation »

F	Caractéristique	Valeurs
1	Appellation	Chaudière gaz (ch+appoint ECS)
2	Type de composant	Générateur catalogué
18	Lien catalogue	Chaudière condensation
31	Nombre identiques	
32	Indice de priorité	1
33	Indice de priorité en ECS	2

1	Caractéristique	Valeurs
1	Puissance nominale en chaud	
2	Puissance intermédiaire	
5	Type de chaudière ou de PAC	Chaudière condensation
6	Type d'énergie	Gaz
9	Ventilateur du côté combustion	Ventilateur présent
13	Certif. rendement 100% Pn	
14	Rendement à charge 100% Pn	
15	Certif. rendement part.	
16	Rendement charge partielle	
18	Certification pertes à l'arrêt	
20	Pertes à l'arrêt	
22	Certification conso aux.	-
24	Conso élec auxiliaires à Pn	
25	Puiss. électr. à charge nulle	
26	Certification temp. mini fonc.	
27	Temp. mini fonctionnement	
28	Certification temp. maxi fonc.	
29	Temp. maxi fonctionnement	
145	Présence ballon d'eau intégré	Générateur sans ballon
166	Cogénération	Pas de module de cogénération

Toutes les caractéristiques de performances des générateurs sont disponibles sur le site du fabricant, EDIBATEC : www.edibatec.com et la base de données ATITA : www.rt2012-chauffage.com

Indice 1 : base
Indice 2 : appoint

La chaudière gaz à condensation assure des fonctions de chauffage et d'ECS.

Les chaudières gaz ont leurs rendements certifiés selon la directive 2009/142/CE concernant les appareils gaz.

Une valeur de rendement à 100% Pn justifiée ou déclarée peut entrainer une faible augmentation de la consommation de 1 à 2 % (par rapport à une valeur certifiée).

Une valeur de rendement à 30% Pn justifiée ou déclarée peut entrainer une augmentation de la consommation de 5 à 10 % (par rapport à une valeur certifiée).

Attention, toutes les valeurs par défaut proposées correspondent aux valeurs minimales indiquées dans les normes. Elles sont pénalisantes.

Etape n°3: Création de l'objet boucle solaire « Boucle solaire CESI»

1	Caractéristique	Valeurs
1	Appellation	Boucle solaire (CESI)
2	Type de composant	Boucle solaire
3	Référence du produit	
4	Superficie capteurs	
5	Azimut capteurs	
6	Inclinaison capteurs	
7	Régulation boucle solaire	
8	Statut du rendement optique	
10	Rendement optique du capteur solaire	
11	Coefficient pertes du premier ordre du capteur (a1)	
12	Coefficient pertes du second ordre du capteur (a2)	
13	Pertes boucle solaire (partie extérieure)	
14	Pertes boucle solaire (partie intérieure)	
15	Présence d'un échangeur	Sans échangeur
16	Facteur angle d'incidence	
17	Puissance nominale de la pompe	

Attention à l'orientation des panneaux qui a un fort impact sur la production d'ECS. Une orientation au Nord (cas extrême) augmente de 10 à 20 % la consommation totale.

Bien choisir l'inclinaison en fonction du projet. Une modification de celle-ci peu entrainer une augmentation de la consommation jusqu'à 10% (cas extrême).

De manière générale la régulation de la boucle solaire s'effectue sur l'ensoleillement en maison individuelle.

Les caractéristiques de performance des capteurs solaires sont données dans les avis techniques ou les PV Keymark des produits. Bien renseigner le rendement et les coefficients de pertes du 1^{er} et 2nd ordre du capteur.

La présence d'un échangeur correspond à la présence ou non d'un échangeur extérieur au ballon solaire.

Attention au facteur d'angle d'incidence qui a un fort impact sur la consommation (+30% environ au cas extrême).

Etape n°4: Création du système de stockage « Production Stockage»

9	Caractéristique	Valeurs
1	Appellation	Production-Stockage
2	Type de composant	Ballon de stockage / ballon solaire
18	Lien catalogue	Balon stockage
20	Source ballon	Boucle solaire (CESI)
24	Source appoint	Chaudière gaz (ch+appoint ECS)
26	Fraction appoint	
31	Nombre identiques	
33	Indice de priorité en ECS	1

Dans le système « CESI classique », l'appoint gaz est intégré au stockage.

)±	Caractérist ve	Valeurs
146	Type de ballon solaire	Ballon (CESI/CESC)
147	Appoint intégré	Avec appoint intégré
149	Volume du ballon	
151	Type de pertes thermiques	
153	Pertes thermiques ballon	
154	Temp. max. ballon	
156	Gestion du thermostat ballon	9-9-9-14-14-14-14-14-14-14-14-14-14-14-14-14-
157	Base : hystérésis thermostat ballon	
158	Base : hauteur échangeur	
159	Base : n° zone régulation	
160	Appoint : gestion du thermostat ballon	
161	Appoint : hystérésis thermostat ballon	
162	Appoint : hauteur échangeur	
163	Appoint : n° zone élément chauff.	
164	Appoint : n° zone régulation	

Très faible augmentation (<1%) de la consommation pour une valeur justifiée ou par défaut du type de perte thermique par rapport à une valeur certifiée.

Constante de refroidissement disponible dans les caractéristiques techniques du système.

Très faible augmentation (<1%) de la consommation entre un chauffage du ballon permanent et de nuit. Idem pour l'appoint intégré.

L'hystérésis permet de faire la distinction entre les températures de marche et d'arrêt des dispositifs chauffant du ballon.

Elle correspond à une « tolérance » autour de la valeur de consigne du ballon.

Etape n°5 : Création du « Circulateur du réseau de distribution de groupe »

Dans l'objet « Emission » (iii) :

On indique la présence du circulateur et la puissance de ce dernier.

65	Mode régulation du circulateur	
66	Débit volumique résiduel en chauffage	
67	Puissance circulateurs en chauffage	

Les caractéristiques des réseaux de distribution de chauffage et d'ECS (longueurs, puissances et vitesse du circulateur....) dépendent du projet. Elles sont détaillées dans le guide pratique RT2012: www.energies-avenir.fr

Ce circulateur est généralement intégré à la chaudière.

Pour des circulateurs à multi vitesses réglables manuellement, la puissance du circulateur à saisir est la moyenne des puissances des différentes vitesses.

Pour des circulateurs à vitesse variable, la puissance du circulateur à saisir est la moyenne entre la puissance maximale et minimale.

Une vitesse constante du circulateur de distribution peut entrainer une augmentation des consommations d'environ 5% par rapport à une vitesse variable.