Certification variation temporelle

Dans le but de garantir à nos clients et prescripteurs les meilleures performances, OVENTROP a mis en œuvre la certification de la **valeur de variation temporelle** de ses robinets thermostatiques par un organisme indépendant.

Vous trouverez ci-dessous un condensé de ces valeurs pour nos modèles les plus courants que vous pouvez intégrer dans vos logiciels de calcul à la place de la valeur par défaut.

Les certificats sont disponibles sur simple demande à mail@oventrop.fr ou auprès de votre prescripteur.

Marque Commerciale: OVENTROP

Nom Commercial: UNI XH Ref: 101 13 45

Numéro d'enregistrement: 009

Valeur certifiée $\Delta\theta_{VT}$ (en K) 0.2

Marque Commerciale: OVENTROP

Nom Commercial: UNI LH Ref: 101 14 65

Numéro d'enregistrement : 007

Valeur certifiée $\Delta\theta_{VT}$ (en K) 0.38

Marque Commerciale: OVENTROP

Nom Commercial: UNI LH Ref: 101 16 65

Numéro d'enregistrement : 008

Valeur certifiée $\Delta\theta_{VT}$ (en K) 0.23

Marque Commerciale: OVENTROP

Nom Commercial: UNI LD Réf: 101 14 75

Numéro d'enregistrement : 029

Valeur certifiée $\Delta\theta_{VT}$ (en K) 0,38

Téléphone : 03 88 59 13 13 Télécopie : 03 88 59 13 14 Messagerie : mail@oventrop.fr

Certification variation temporelle

oventrop

Prise en compte des performances des radiateurs et régulations associées dans la RT 2005 / 2012

Pour une température de consigne donnée d'un local, la température prise en considération dans le calcul est majorée de l'incidence de deux valeurs : la variation spatiale et la variation temporelle

suivant la formule ci-dessous :

$$\Theta i = \Theta ii + \delta \Theta vs + \delta \Theta vt$$

Avec:

O: température initiale de consigne de chauffage

 Θ_{ii} : température intérieure initiale de consigne de chauffage $\delta\Theta_{vs}$: variation spatiale de température en mode chauffage $\delta\Theta_{vt}$: variation temporelle de température en mode chauffage

Impact des variations spatiales et temporelles sur la consommation énergétique

Les variations spatiales et temporelles impactent de manière significative sur le bilan énergétique selon la formule suivante :

Prenons pour hypothèse:

• température initiale de consigne du local :

• radiateur eau chaude basse température dans un local, hauteur sous plafond < 4 m

$$\delta\Theta_{\rm VS} = 0.2$$

· régulation intégrée ou non, non certifiée

$$\delta\Theta$$
vt = 1.8

La température de calcul du radiateur Θ i sera égale à: Θ i = 19 + 0,2 + 1,8 = 21,00°C soit une majoration Θ i de 2°C par rapport à la température de consigne !

Prenons la même hypothèse, avec la régulation Oventrop :

• régulation OVENTROP norme CENCER EN215

$$\delta\Theta_{\rm vt} = 1.2$$

La température de calcul du radiateur Θi sera égale à : Θi = 19 + 0,2 + 1,2 = 20,40°C

Prenons la même hypothèse, avec la régulation Oventrop et la variation temporelle:

• régulation OVENTROP avec CENCER + variation temporelle certifiée

$$\delta\Theta_{\rm vt} = 0.26$$

La température de calcul du radiateur Θ i sera égale à : Θ i = 19 + 0,2 + 0,26 = 19,46°C