

- Exemples de calculs d'énergie grise
- Quels critères de choix pour les matériaux ?
- Une pluralité d'indicateurs.

Etude « Energie grise » pour les parois opaques d'un bâtiment

- Données de base :
 - Maison RDC de 10 m x 10 m soit 100m². Hauteur = 2.50 m
 - Superficie des parois : 100 m²
 - Performance énergétique 50 KWh/m².an soit 5000 KWh.an

Toutes les données utilisées sont disponibles sur le site : <u>www.citemaison.fr</u>. Ces données sont utilisées dans le logiciel Cocon.

Etude « Energie grise » pour les parois opaques d'un bâtiment

- Résistance thermique des parois visée : R = 5.5m²/W.K
- Pour arriver à cette performance de parois nous simulerons trois cas :
 - Isolation en Laine de Verre ($\lambda = 0.038 \text{ W/m.K}$); e = 21 cm
 - Isolation en Laine de Bois ($\lambda = 0.042 \text{ W/m.K}$); e = 23 cm
 - Isolation en botte de paille ($\lambda = 0.052 \text{ W/m.K}$); e = 29 cm

Etude « Energie grise » pour les parois opaques d'un bâtiment

- Volume nécessaire pour chaque type d'isolation :
 - $V_{Idv} 0.21 \times 100 = 21 \text{ m}$
 - $V_{ldb} 0.23 \times 100 = 23 \text{ m}$
 - $-V_p$ 0.29 x 100 = 29 m3

X 65

L'Analyse de Cycle de Vie au service des choix constructifs

Etude « Energie grise » pour les parois opaques d'un bâtiment

- Énergie grise mobilisée :
 - Énergie grise d'origine non renouvelable pour LDV = 720 KWh/m3

Soit 15 120 KWh pour l'ensemble des parois

Énergie grise d'origine non renouvelable pour LDB = 10 KWh/m3

Soit 230 KWh pour l'ensemble des parois

-Énergie grise d'origine non renouvelable pour Paille = 1 KWh/m3

Soit 29 KWh pour l'ensemble des parois

Des économies à partir de combien de temps ?

PRT 2005 : C moyenne = 190 KWh/m²/an ou 19 000 KWh sur 12 mois Préconisation pour la performance des parois : R = 2.2 Soit 9.5 cm de LDB soit 9.5 m3 de LDB soit 95 KWh d'énergie grise non renouvelable

RT 2012 : C moyenne = 50 KWh/m²/an ou 5 000 KWh sur 12 mois Préconisation pour la performance des parois : R = 5.5 Soit 21 cm de LDV soit 21 m3 de LDV soit 15120 KWh d'énergie grise non renouvelable

Des économies à partir de combien de temps ?

RT 2005 : 19 000 KWh sur 12 mois 14 000 KWh économisés soit 1166 KWh /mois RT 2012 :5 000 KWhsur 12 mois

95 KWh
 d'énergie grise
 non renouvelable

15 025 KWh en plus utilisés

15 120 KWh
 d'énergie grise
 non renouvelable

13 mois de consommation énergétique

Etude « Energie grise » pour les parois opaques d'un bâtiment

- Impact environnemental / Changement climatique (en kg eq Co2 /m3):
 - Impact environnemental / Changement climatique pour LDV = 90 Kg eq Co2/m3
 Soit 1890 kg eq Co2 pour l'ensemble des parois
 - Énergie grise d'origine non renouvelable pour LDB = 256 eq Co2/m3

Soit - 5888 kg eq Co2 pour l'ensemble des parois

-Énergie grise d'origine non renouvelable pour Paille = - 165 eq Co2/m3

Soit - 4785 kg eq Co2 pour l'ensemble des parois

Impact sanitaire des matériaux de construction

Un constat : nous passons 22 h par jour en moyenne à l'intérieur.
 Origines des polluants dans les matériaux de construction (COV, Fibres)
 Présents dans : revêtements de sol, isolants, peintures, colles, panneaux de particules ...

la Maison, son Environnement

L'Analyse de Cycle de Vie au service des choix constructifs

Quels Critères de Choix?

- Conductivité thermique (W/m.K)
- Capacité thermique J/m3.K
- Diffusivité thermique m²/s
- Effusivité thermique Watt racine carré d'heure par mètre carré kelvin

