

DIVA

Projet ANR BioEnergies 2010
Programme de recherche industrielle de 48 mois
Débuté en décembre 2010

Contact: Patrick.Dabert@irstea.fr

Plan de la présentation

I. Présentation de DIVA

Objectifs, Partenariat, Tâches et Structure

II. Focus sur la caractérisation des digestats

- Filières suivies
- Analyses réalisées
- Premiers résultats

III. Travaux en cours

- Post-traitements
- Valorisation agronomique

Objectifs de DIVA

- Inventorier les différents types de digestats et les filières de gestion actuellement utilisées en France
- Caractériser les digestats de 5 filières typiques
- Evaluer la capacité des digestats à être utilisés en valorisation agronomique directe ou à être transformés via des post-traitements ultérieurs
- Effectuer un bilan technico-économique et environnemental (notamment vis à vis des gaz à effet de serre) des filières de post-traitement des digestats en comparaison avec l'épandage direct
- Apporter des données pour favoriser, à terme, la mise en place d'un cadre réglementaire permettant une évolution des digestats d'un statut de "déchet" vers celui de "produit", complémentaire du projet VALDIPRO (AILE et TRAME)

Partenariat DIVA

Publics

- 1. Irstea/Cemagref Rennes
- 2. Irstea/Cemagref Montoldre
- 3. Ecole des Mines Albi
- 4. INRA Grignon
- 5. Polytech Montpellier 2

Privés

- 1. Solagro
- 2. Suez Environnement
- 3. Idex/Géotexia

Tâche 1 : GESTION, COORDINATION ET VALORISATION DU PROJET

Tâche 2: ETAT DE L'ART DES DIGESTATS ET DE LEURS PROCEDES DE POST-TRAITEMENT: PRATIQUES ET BESOINS D'EVALUATION DES FILIERES Tâche 3: Tâche 4 : **EVALUATION ET DEVELOPPEMENT DES PROCEDES DE CARACTERISATION DES DIGESTATS BRUTS POST-TRAITEMENT DES DIGESTATS** 3.1 Prélèvements 4.1 digestats solides: 3.2 Adéquation aux normes - séchage thermique amendement ou engrais - compostage 3.3 Propriétés physiques et aptitude à 4.2 digestats liquides: la séparation de phase -- épuration biologique - séparation membranaire Biodégradabilité résiduelle 4.3 Adéquation aux normes amendement ou engrais Tâche 5: VALEUR AGRONOMIQUE ET IMPACTS ENVIRONNEMENTAUX DU RETOUR AU SOL (EPANDAGE) DES DIGESTATS BRUTS ET TRAITES Valeur agronomique et émissions gazeuses Tâche 6:

BILAN ENVIRONNEMENTAL ET TECHNIQUE DE L'UTILISATION AGRONOMIQUE DES DIGESTATS BRUTS OU TRANSFORMES

Plan de la présentation

I. Présentation de DIVA

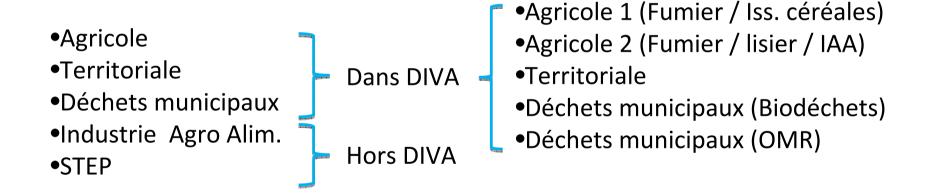
Objectifs, Partenariat, Tâches et Structure

II. Focus sur la caractérisation des digestats

- Filières suivies
- Analyses réalisées
- Premiers résultats

III. Travaux en cours

- Post-traitements
- Valorisation agronomique



Etude SOLAGRO: typologie des filières de méthanisation

Choix de 5 filières / 5 types de déchets :

<u>Déchets traités</u>

Fumiers bovins (rabotage engraissement taurillons):

6000 T/an

Issues céréales : 300 T/an

Process

Digesteur Mésophile (40-42°C) Agrikomp 1500 m3 Tps séjour 60 à 70 jours

Alimentation 12 à 19 T/j – en fonctionnement depuis mai 2010

Digestat

Séparation par vis sans fin + tamis Fosse stockage de la phase liquide 2950 m3 (non agitée sauf période de soutirage pour épandage)

<u>Biogaz</u>

Valorisé en cogénération (production de chaleur ⇔ eau chaude taurillons, résistance fosse réception graisses, chauffages 3 maisons + bureau)

Déchets traités

Fumiers bovins (vaches laitières): 1900 T/an

Lisiers bovins: 4400 m3; Lisiers porcins: 1800 m3

Déchets tiers : 1000 T/an (issues céréales, IAA, ensilage -

très variable)

Déchets IAA lig.: 1450 m3

Process

Digesteur Mésophile (44°C) Agrikomp 1000 m3 Tps séjour environ 30 jours

Digestat

Post- digesteur :2300 m3 (temps de stockage pouvant aller jusqu'à 6 mois – Epandage du brut en Juin, Aout-Septembre, Novembre) Séparation par vis sans fin + tamis

Biogaz

Valorisé en co-génération (production de chaleur ⇔ Porcherie + 2 maisons + piscine)

Déchets traités (prévision)

38 000 T de lisiers de porcs 37 000 T de déchets d'IAA (boues physicochimiques d'abattoir, boues graisseuses, matières stercoraires, contenu digestif porcs) Issues de céréales, fientes de volailles (ponctuel)

Process

process voie humide mésophile (35 à 38°C) 2 digesteurs de 3000 m³ temps de séjour environ 60 j

Digestat

1 post digesteur de 3000 m³, temps de séjour environ 2 semaines Séparation de phase par centrifugation Séchage du digestat solide (pas encore en fonctionnement) Filtration membranaire du digestat liquide (UF, OI)

Biogaz

Valorisé en co-génération (production de chaleur ⇔ une partie pour chauffer les digesteurs, l'unit d'hygiénisation, le post-traitement des digestats)

BIOD

Déchets traités

21 000 tonnes Biodéchets (FFOM, Papiers –cartons, textiles sanitaires + déchets verts)
2000 tonnes déchets tiers (déchets IAA : yaourts, pâtés, etc.)

1300 tonnes de graisses

Process

1 digesteur de 3100 m³, process voie humide thermophile (55°C) Valorga, agitation par biogaz ; temps de séjour 21 jours

Digestat

Séparation de phase en 3 étapes : Pressage, tamisage, centrifugeuse (avec ajout de floculant –hors période de recirculation vers digesteur).

Compostage du digestat solide (aération 3 jours, casier 2 semaines avec un retournement, criblage, maturation)
Digestat liquide : recirculation ou STEP

Biogaz

Valorisé en co-génération (production de chaleur ⇔ une partie pour chauffer les digesteurs)

Déchets traités

170 000 tonnes OMR 33 000 tonnes bio-déchets

Process

2 lignes de traitement selon nature du déchet (OMR Brute 0-20mm, bio-déchets) 8 digesteurs de 1400 m³, process voie sèche thermophile, agitation par pales

Digestat

Compostage du digestat

Biogaz

Valorisé en co-génération (production de chaleur ⇔ une partie pour chauffer les digesteurs)

Analyses en cours!

Calendrier des prélèvements

5 prélèvements sur 1 an

T0: Juillet à Septembre 2011

T1 : Novembre – Décembre 2011

T2: Février - Mars 2012

T3: Avril - Mai 2012

T4: Juillet 2012

Prélèvements de :

 Digestats bruts en sortie de digesteur ou post digesteur
 Sorties de séparation de phases :

- Phase solide
- Phase liquide

Plan de la présentation

I. Présentation de DIVA

Objectifs, Partenariat, Tâches et Structure

II. Focus sur la caractérisation des digestats

- Filières suivies
- Analyses réalisées
- Premiers résultats

III. Travaux en cours

- Post-traitements
- Valorisation agronomique

Analyses réalisées

Analyses demandées pour les amendements et engrais :

- NFU 44-051 : amendement organique
- NF U 44-095 : compost de boues
- NFU 42-001 : engrais

T0, T2, T4 : analyses simplifiées (AS)

• pH; MS/MO solide; MS/MO liquide; Carbone Total; Carbone Soluble; Azote Total; Azote organique; Azote Nitrique; Azote Ammoniacal

T1, T3: analyses complètes (AC)

- pH; MS/MO solide; MS/MO liquide; Carbone Total; Carbone Soluble; Azote Total; Azote organique; Azote Nitrique; Azote Ammoniacal
- Inertes (sur Dig-BRUT); Polysaccharides; Protéines; Lipides (sur Dig-BRUT); Respirométrie; BMP (sur Dig-BRUT); Fractionnement biochimiques (sur Dig-BRUT); Alcalinité (sur Dig-Liquide)
- Analyses sous-traitées:
 - Escherichia coli; Clostridium perfringens; Streptocoques fécaux; Salmonelles; Listeria monocytogenes.
 - Œuf d'helminthes parasites; Œuf d'helminthes parasites viables.
 - Phosphore; Phosphore soluble; Phosphore soluble citrate d'ammonium; Potassium; Potassium soluble; Magnésium; Magnésium soluble; Calcium; Calcium soluble; Métaux lourds; PCB (7); HAP

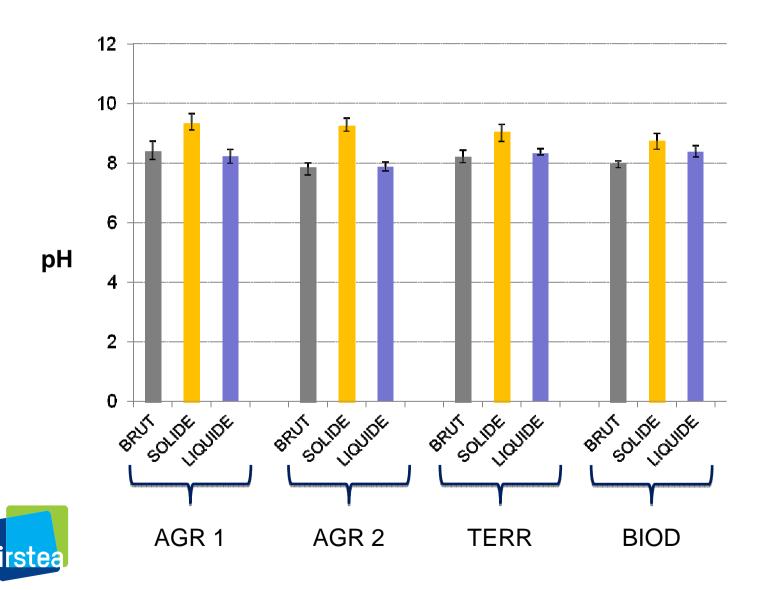
Plan de la présentation

I. Présentation de DIVA

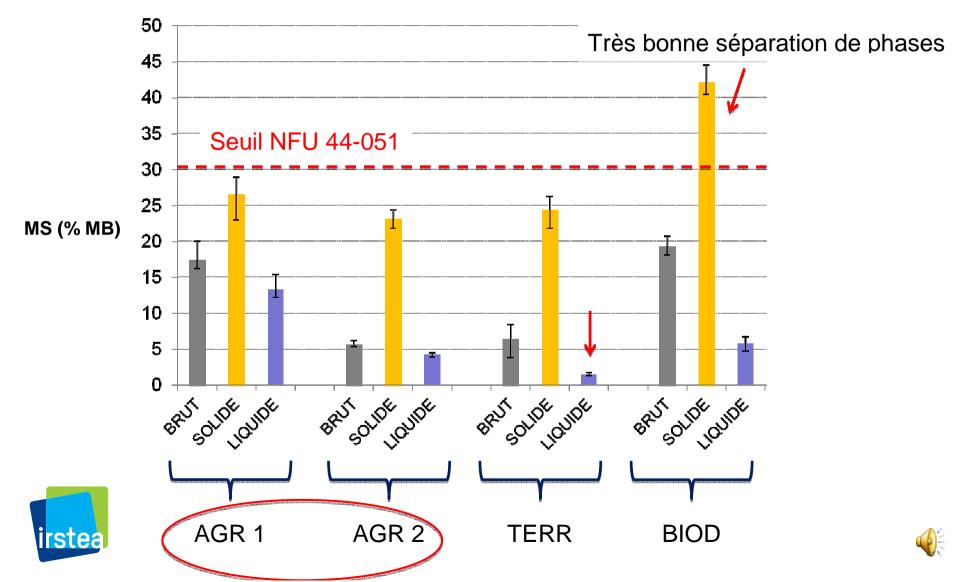
Objectifs, Partenariat, Tâches et Structure

II. Focus sur la caractérisation des digestats

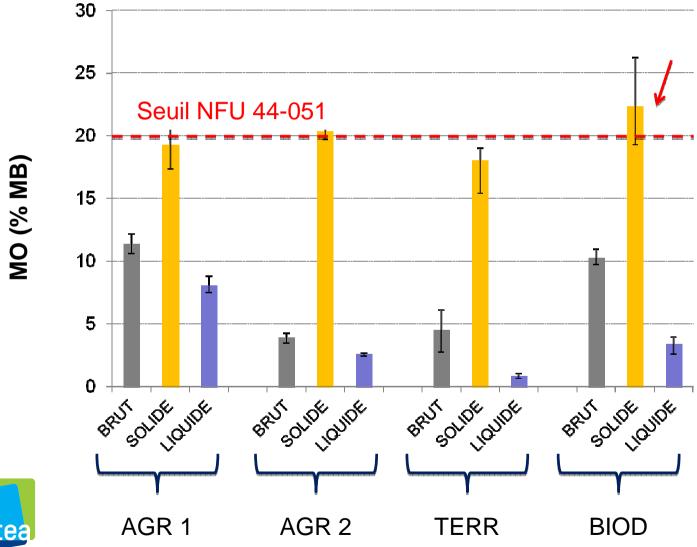
- Filières suivies
- Analyses réalisées
- Premiers résultats


III. Travaux en cours

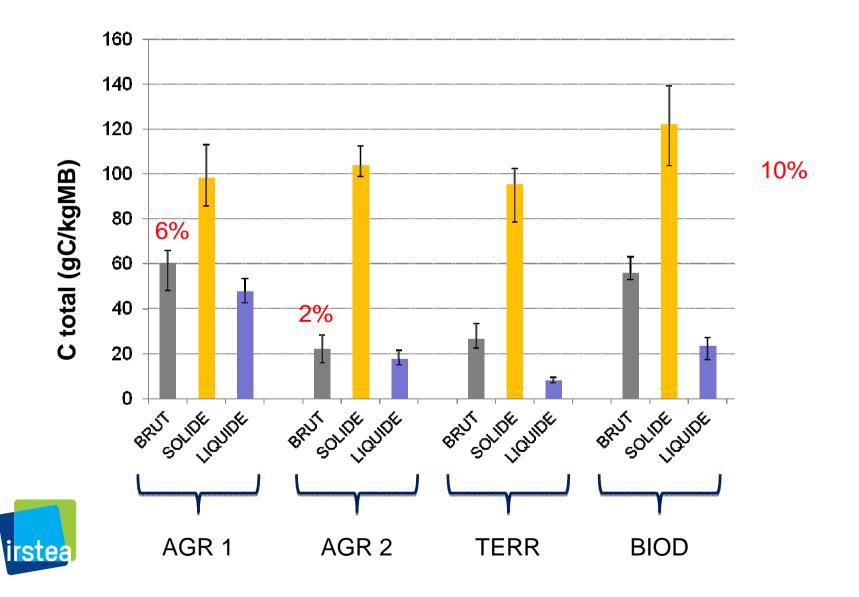
- Post-traitements
- Valorisation agronomique

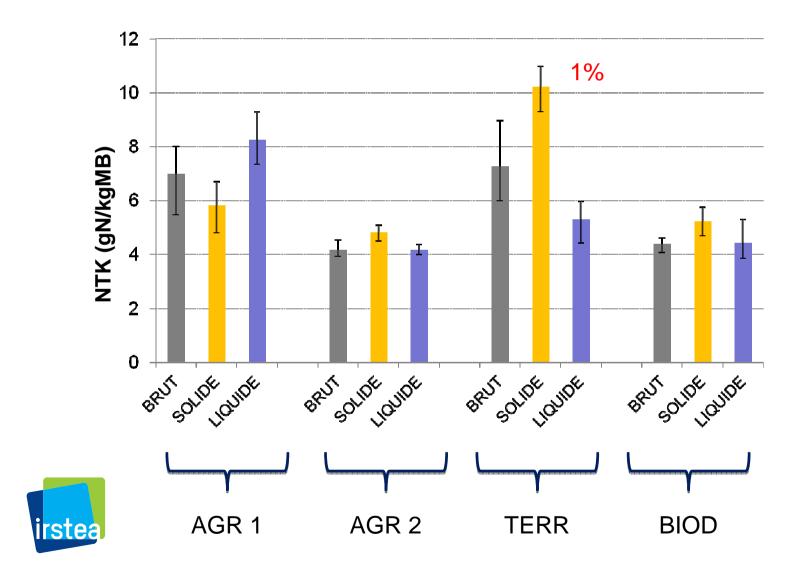


pH des digestats : basique, pH de 8 pour les liquides et 9 pour les solides

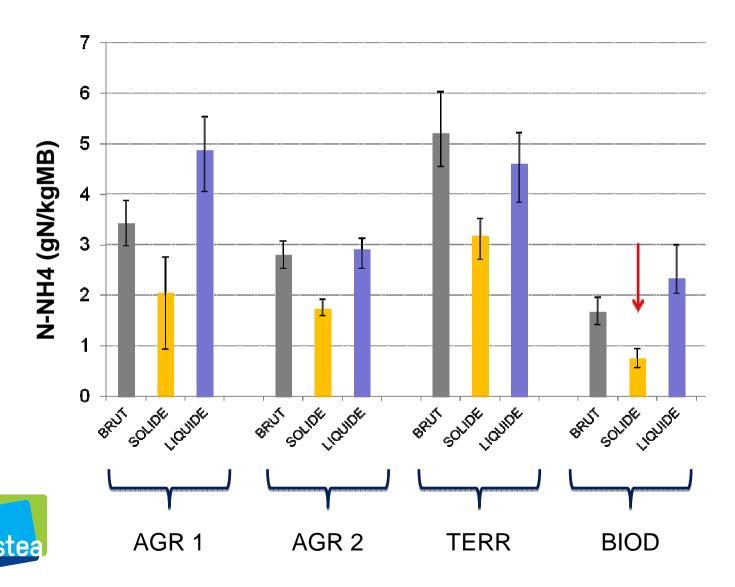


Teneur en MS: variable d'un site à l'autre selon les déchets et le procédé de séparation de phase, conformité à la norme amendement organique <u>pour ce paramètre</u> pour 1 seul digestat


Teneur en MO: variable d'un site à l'autre selon les déchets et le procédé de séparation de phase, conformité à la norme amendement organique <u>pour ce paramètre</u> pour 1 seul digestat



Teneur en C total : variable d'un site à l'autre selon les déchets et le procédé de séparation de phase



Teneur en N total : valeurs en conformité à la norme amendement organique <u>pour ce paramètre</u> (inférieures à 3% de MB)

Teneur en N NH4: seul BIOD solide en conformité à la norme amendement organique <u>pour ce paramètre</u> (N NH4 inférieur à 33% de N total)

CONFORMITE AUX NORMES				
Critère	Valeur OK	NFU 44-051	NFU 44-095 (TERR)	NFU 42-001
MS(%MB)	BIOD solide	≥ 30%	≥ 50%	-
MO (%MB)	BIOD solide	≥ 20 à 25%	≥ 20%	-
MO (%MS)	Tous	-	≥ 30%	-
N ou P ₂ O ₅ ou K ₂ O ₅ (%MB)	Tous	< 3%	< 3%	- > 3%
N + P ₂ O ₅ + K ₂ O ₅ (%MB)	Tous	< 7%	< 7%	
N _{orga} (%MB)		-	-	
N-NH4+/NT	BIOD solide	<33 %		> 3%
C/N	Agri1, BIOD et OMR brut + tous les solides	>8	-	-
MO/N _{orga}	TERR OK	-	< 40	-
Œufs d'helminthes viables	OK pour Tous	Abs/1.5 g		
Salmonella	OK pour Tous	abs/1 ou 25g	abs/1 ou 25g	-
Listeria monocytogenes	OK pour Tous	-	abs/1 ou 25g	-
E. coli (UFC/gMB)	TERR OK	-	< 10³ à 10⁴	-
Cl. Perfringens (UFC/gMB)	Souvent un problème	-	$< 10^2 \text{à} 10^3$	<u>-</u>
Streptocoques fécaux (UFC/gMB)	TERR OK	-	< 10 ⁵	<u>-</u>

Autres paramètres

Aucun digestat ne satisfait à la norme engrais pour les paramètres :

 $N + P_2O_5 + K_2O_5 > 3\% MB$ N organique > 3% MB

Métaux lourds

⇒Dépassement sur :

⇒ Cuivre: OMR et Agri1 liq T3 et T1

 \Rightarrow Zinc : OMR T3; Agri2 liq T1 ; Agri1 T3 et T1 ; TERR T3 et T1

⇒ Cadmium : TERR T1 et T3

HAP

⇒Sans problème

- Des qualités stables
- Peu de problèmes sanitaires

MAIS

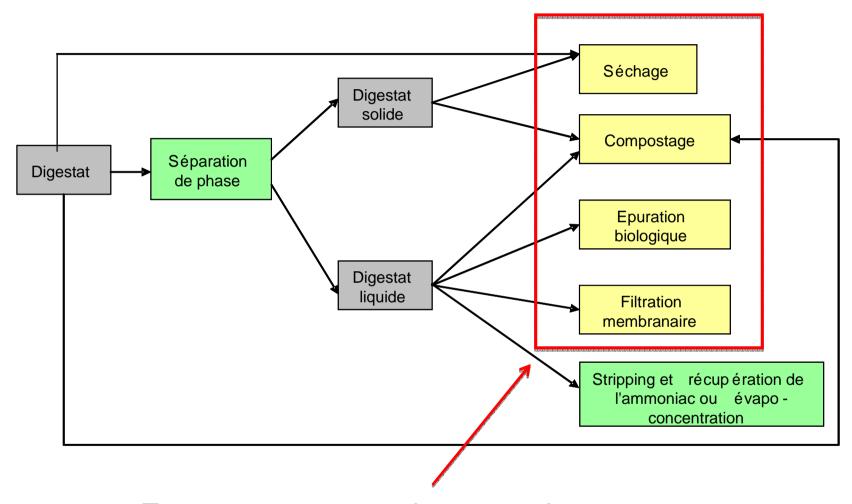
- Des produits trop humides
- Trop d'azote ammoniacal pour des amendements
- Pas assez de nutriments pour des engrais
 - ♥ Pas seulement un problème de dénomination

Besoin de poursuivre les travaux sur :

- valeur agronomique
- post traitements
- normalisation

Plan de la présentation

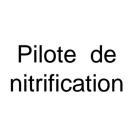
- I. Présentation de DIVA
 - Objectifs, Partenariat, Tâches et Structure
- II. Focus sur la caractérisation des digestats
 - Filières suivies
 - Analyses réalisées
 - Premiers résultats


III. Travaux en cours

- Post-traitements
- Valorisation agronomique

Post-traitements

Focus sur 4 types de pos-traitements


Post-traitements: Pilotes construits et en cours d'évaluation

Pilote continu de séchage par contact avec agitation

Pilote de filtration NF/RO

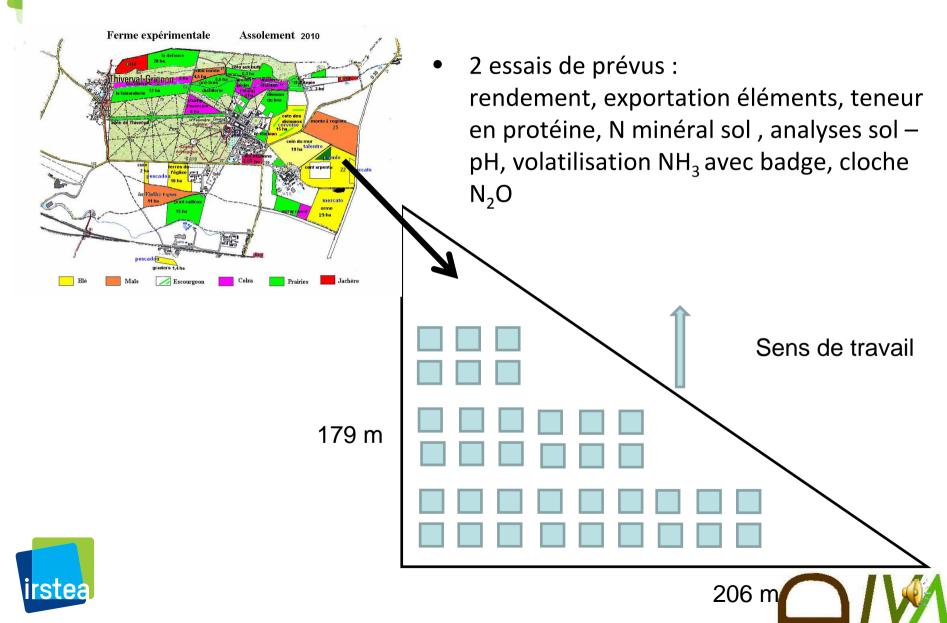
Pilote de compostage

Valorisation agronomique

Valeur agronomique à court terme:

- -Valeur fertilisante azotée:
- -Risques phytotoxicité au moment de l'apport
- -Emissions gazeuses lors de l'apport au sol
- -Simulation du devenir au champ C et N

Valeur amendante:


-Capacité à entretenir stock C sol

Essais au champ

DIVA

Merci: Pour votre attention! Et aux exploitants qui nous ont ouvert leurs portes

Contact: Patrick.Dabert@irstea.fr

