

Journée du Confort et de l'Eau RT 2012 Que faire et ne pas faire!

Solène DUPRAT (CARDONNEL Ingénierie)

LA RT 2012

- La Philosophie de la RT 2012
- Les labels
- Le BBIO
- Saisie des données dans les logiciels
- PAUSE
- Le comptage
- Le coût de la RT2012 en logement
- L'éclairage
- Retour d'expérience conception chantier
- La maintenance

Journée du Confort et de l'Eau

Philosophie de la RT 2012

Solène DUPRAT (CARDONNEL Ingénierie)

LA RT 2012 en vigueur aujourd'hui

- 2 arrêtés fixant les objectifs:
 - Arrêté 26/10/2010 + Rectificatif : Habitation Bureaux Enseignement primaire et secondaire – Petite enfance
 - Arrêté 28/12/12 + Rectificatif : Hébergement pers. âgées dépendantes hôtels – restauration – commerces – gymnase – santé – industriel – artisanal – aérogare – tribunal
- 1 arrêté validant la méthode :
 - Arrêté 20/07/2011 : Approbation de la Méthode Th-B-C-E

(annexe : détails de la méthode)

- 1 arrêté pour les attestations :
 - Arrêté 11/10/2011 : Attestations de prise en compte de la RT

L'annulation de l'arrêté méthode par le Conseil d'État ne modifie pas les exigences de la RT 2012 qui continue de s'appliquer

LA RT 2012 : Les grandes nouveautés

- Exigences de résultats 3 indicateurs :
 - Bbio (points): Bilan Bioclimatique
 - TiC (° C) Approche du confort d'été
 - Cep (kWhep.m².an) Consommations d'énergie
- Exigences de moyens (suivant type de bâtiment):
 - Surface de baies vitrées minimales (habitation)
 - Perméabilité maximum et vérifiée in situ (habitation)
 - Installation EnR (maison individuelle)
 - Comptage énergie
 - Gestion de l'éclairage
 - Isolation et traitement des ponts thermiques...

LA RT 2012 : Les grandes nouveautés

- Nouvelle surface : SHON RT SU RT
- Valorisation des réseaux de chaleur moins polluants (<150g CO2)
- Valorisation des espaces tampons et solarisés
- Contrôles de conformité
- Larges panels de systèmes modélisables

Une réglementation plus ancrée dans le process de construction

- Dépôt de permis : ATTESTATION n° 1
 - Surfaces de baies vitrées Bbio Recours ENR Résultats étude faisa.
- APD PRO :
 - Validation des solutions de conception et vérifications des exigences de moyens et de résultats
- DOSSIER DE CONSULTATION:
 - Pièces marché intégrant les exigences de la RT 2012
- EXE :
 - Respect des pièces marchés ou vérification des variantes
 - Justificatifs des performances (matériaux, équipements techniques..)
 - Qualité de mise en œuvre

Une réglementation plus ancrée dans le process de construction

- RECEPTION : ATTESTATION n° 2
 - Vérifications in situ synthèse de l'étude thermique
- JUSQU'À 3 ANS APRES RECEPTION

LA RT 2012 : Ce qui reste inchangé

- Des outils à disposition :
 - Commissions Titre IV et Titre V
 - Commission de Suivi des réglementations RT :
 - Fiches d'application
 - Foire aux questions
 - Un site internet : rt-bâtiment.fr

LA RT 2012 : Nouvelles responsabilités des acteurs

- Les maitres d'ouvrage
 - Adapter la démarche de conception
 - Chef d'orchestre des attestations
- Les maitres d'œuvre
 - Concevoir et Valider
 - Responsabilité des pièces écrites
 - Mise à jour régulière de l'évolution des logiciels / informations...
- Les entreprises du bâtiments
 - Adaptation des méthodes de construction
 - Prise en compte dans les marchés des nouvelles exigences

LA RT 2012 : Nouvelles responsabilités des acteurs

- Les certificateurs / contrôleur techniques
 - Suivis réguliers et vérifications précises
 - Tests in situ
- Les fabricants

La Philosophie RT 2012

- Un outil de <u>vérification</u> pas à pas des exigences
- Des acteurs de plus en plus concernés et plus tôt dans le projet : synergie
- Des bâtiments performants et de qualité

Journée du Confort et de l'Eau

Labels et certifications

Futurs labels RT 2012

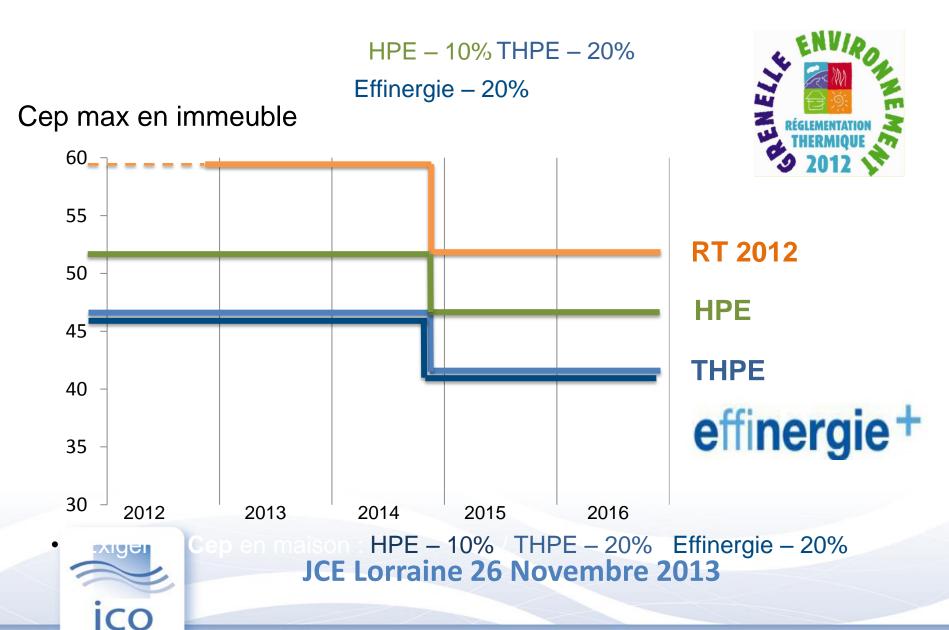
Label d'état HPE RT 2012

- En préparation par la DHUP; application premier semestre 2013
- Résidentiel collectif : Bbio max 10% et Cep < 50 puis 45 kWh/m².an après 1/01/2015
- Tertiaire bureaux : Bbio max 20 % et Cep max 20%
- Tertiaire enseignement, crèches : Bbio max 10 % et Cep max 10%
- Perméabilité < 1 si mesure totale ou 0,8 si échantillonnage en résidentiel
- Mesures d'étanchéité en tertiaire pour bât.< 3000 m²
- Réseau de ventilation de classe A (en résidentiel et en tertiaire pour bât. < 3000 m²)
- Obligation d'informer les occupants en résidentiel (guide des usagers)
- Calculs réalisés par un BET 'reconnu'

Futurs labels RT 2012

Label d'état THPE RT 2012

- En préparation par la DHUP; application premier semestre 2013
- Résidentiel collectif : Bbio max 20% et Cep < 45 puis 40 kWh/m².an après 1/01/2015
- Tertiaire bureaux : Bbio max 20 % et Cep max 40%
- Tertiaire enseignement, crèche : Bbio max 10 % et Cep max 20%
- Perméabilité < 1 si mesure totale ou 0,8 si échantillonnage en résidentiel
- Mesures d'étanchéité en tertiaire pour bât. < 3000 m²
- Réseau de ventilation de classe A (en résidentiel et en tertiaire pour bât. < 3000 m²)
- Obligation d'informer les occupants en résidentiel (guide des usagers)
- Calculs réalisés par un BET 'reconnu'

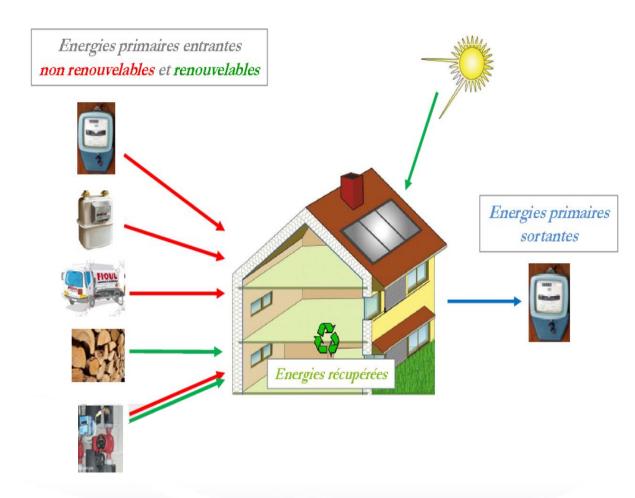


Futurs labels RT 2012

- Label Effinergie +
 - Label avec un niveau d'exigence comparable auTHPE RT2012
 - En cours d'élaboration par Effinergie
 - A priori : Bbio 20%
 - Coefficient d'étanchéité à l'air 20% (0,8 en collectif et 0,4 en maison individuelle)
 - Tests d'étanchéité sur les réseaux aéraulique

•Labels liés à la RT 2012 en résidentiel

Pré-requis


- > Respecter les critères du label Effinergie+
- ➤ Le bâtiment doit faire l'objet d'une évaluation de l'énergie grise et du potentiel d'écomobilité

Exigence principale : BILAN epnr < ECART autorisé

- Faire un bilan en 3 étapes :
 - > Collecte des consommations d'énergie finale entrant et sortant
 - > Passage en énergie primaire non renouvelable
 - Bilan d'énergie primaire non renouvelable
- ➤ Comparer avec un écart autorisé à l'énergie positive pour permettre aux bâtiments exemplaires d'obtenir le label dans toutes les régions et tous les contextes urbains

- Bilan INPUT OUTPUT
- Périmètre :
 - ✓ Bâtiment
 - ✓ Projet visé par le même permis de construire
 - √ ou le permis d'aménager
- Prise en compte de tous les usages énergétiques

Bilan_{epnr} < Ecart_{accepté}

Bilan_{epnr} = consommation en énergie primaire – production en énergie primaire

 $\mathbf{Ecart}_{\mathsf{accept\acute{e}}} = \mathbf{Cep}_{\mathsf{ref}} + \mathbf{Aue}_{\mathsf{ref}} - \mathbf{Prod}_{\mathsf{ref}}$

avec:

Cep_{ref}: Consommation de référence du label Effinergie+

pour les usages réglementés

 $Cep_{ref} = 40 * M_{ctype} * (M_{cgéo} + M_{calt} + M_{csurf} + M_{cGES})$

Aue_{ref}: Consommation de référence pour les usages

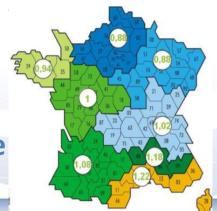
non pris en compte par la RT

Prod_{ref}: Production de référence

 $Prod_{ref} = 110 * Mp_{géo} * Mp_{niv}$

 $\mathsf{Mp}_\mathsf{g\'eo}$ facteur de modulation potentiel solaire local

Mp_{niv} facteur de modulation nombre de niveaux maximal autorisé


Le coefficient M _{cGES} n'est pas utilisé, le bois
et les réseaux de chaleur étant pris en
compte par ailleurs.

Les valeurs de référence pour les usages non pris en compte par la RT ne sont pas encore définies. Une valeur de 70 kWh_{EP}/(m².an) est proposée pour les logements.

Nombre de niveaux	Mp _{niv}
1 à 2	1,0
3	0,8
4	0,6
5 et plus	0,5

ine 26 Novembre

Voies de progrès identifiées :

- Prise en compte des questions de stockage,
 d'autoconsommation et des temporalités différentes des consommations et des productions
- Définition de la notion d'écart accepté pour chaque typologie de bâtiments tertiaires selon les consommations pour les autres usages
- Introduction d'autres notions d'urbanisme ou d'autres critères (masques) pour définir le potentiel de production EnR
- Obligation du calcul de la consommation de l'énergie grise et de la consommation d'énergie liée à la mobilité

RT 2012: Le Bbio

Samia BEZNIA (VINCI Construction France)

Rappels

Extrait de l'arrêté portant approbation de la METHODE DE CALCUL Th-BCE 2012 (30 avril 2013)

Le coefficient Bbio exprimé en points caractérise l'efficacité énergétique du bâti. Il permet d'apprécier celui-ci par rapport aux besoins de chauffage, de refroidissement et de consommations futures d'éclairage artificiel. Il s'appuie sur la valorisation des éléments suivants :

 la conception architecturale du bâti (implantation, forme, aires et orientation des baies, accès à l'éclairage naturel des locaux ...);

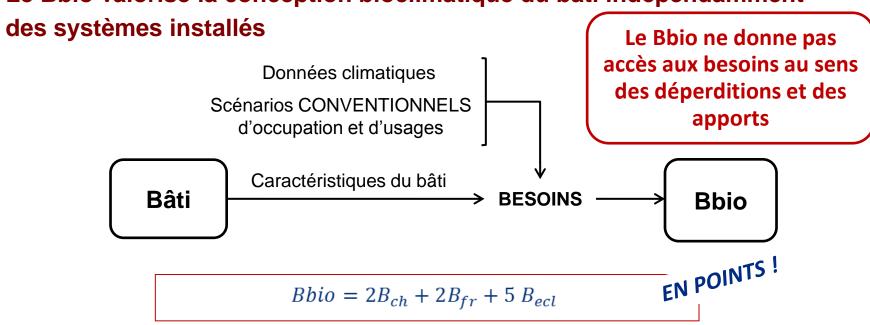
les caractéristiques de l'enveloppe en termes d'isolation, de transmission solaire, de transmission lumineuse,

d'ouverture des baies et d'étanchéité à l'air ;

et les caractéristiques d'inertie du bâti.

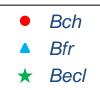
LE BIOCLIMATISME c'est :

l'idée d'adapter la construction au climat et à l'environnement pour que l'habitat s'autorégule aussi bien en hiver qu'en été.


Le Bbio n'est pas le Ubât!

Rappels

Le Bbio valorise la conception bioclimatique du bâti indépendamment



Exigence minimale de performance du bâti : Bbio ≤ Bbiomax

Identification des paramètres influents

DEPERDITIONS PAR L'ENVELOPPE PERTES PAR RENOUVELLEMENT D'AIR INERTIE DU BATI APPORTS SOLAIRES

- Compacité du bâtiment
 Caractéristiques des parois
 Ponts thermiques
 Caractéristiques des baies
 Crientation des baies
 Surface de baies
 Accès à l'éclairage naturel des locaux
- Perméabilité à l'air du bâtiment

Caractéristiques des protections solaires

Débits de ventilation

ETUDES PARAMÉTRIQUES

- Perméabilité à l'air du bâtiment
- Niveau de traitement des ponts thermiques
- Surface de baies
- Niveau d'isolation des parois
- Système d'isolation (ITE/ITI)
- Inertie
- Caractéristiques des baies
- Orientation des baies
- Accès à l'éclairage naturel

RESIDENTIEL COLLECTIF

41 logements $SHAB = 2826 \text{ m}^2$

Exposition BR1

 $SHON_{RT} = 3702 \text{ m}^2$

Classe CE1

Zone H1a

 $Q_{4Pa} = 1.0 \text{ m}^3/\text{h.m}^2$

Béton + ITI

TERTIAIRE DE BUREAUX

 $SU_{RT} = 1 265 \text{ m}^2$

Zone H2b

 $SHON_{RT} = 1 391 \text{ m}^2$

Exposition BR3

Classe CE1/CE2

- $Q_{4Pa} = 1.7 \text{ m}^3/\text{h.m}^2$ Béton + ITE
- Perméabilité à l'air du bâtiment
- Niveau de traitement des ponts thermiques
- Surface de baies

AUTRE TERTIAIRE (EHPAD)

130 lits

 $SU_{RT} = 6 056 \text{ m}^2$

 $SHON_{RT} = 6722 \text{ m}^2$

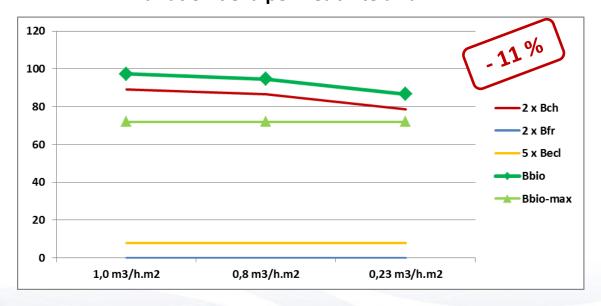
 $Q_{4Pa} = 1.7 \text{ m}^3/\text{h.m}^2$

Béton + ITE

Zone H3

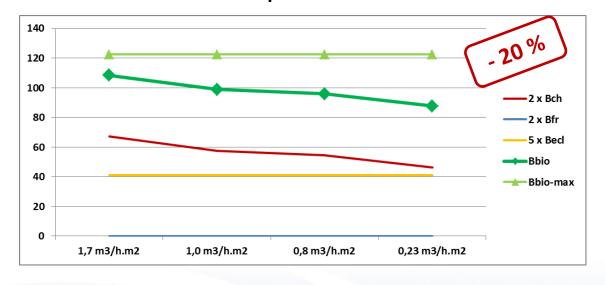
Exposition BR1

Classe CE1/CE2


ETUDES PARAMÉTRIQUES

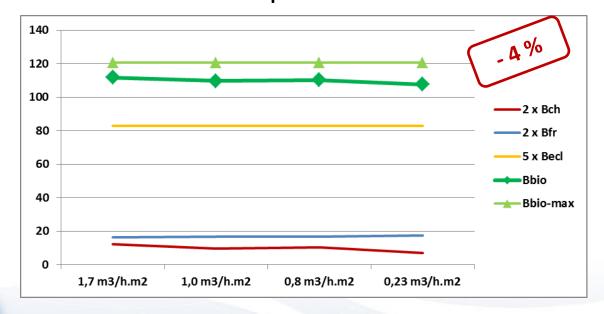
RESIDENTIEL COLLECTIF

Variation de la perméabilité à l'air


ETUDES PARAMÉTRIQUES

TERTIAIRE DE BUREAUX

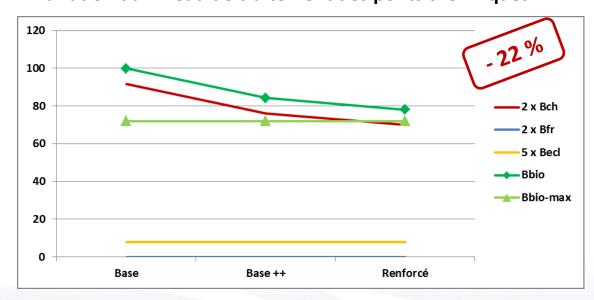
Variation de la perméabilité à l'air


ETUDES PARAMÉTRIQUES

AUTRE TERTIAIRE (EHPAD)

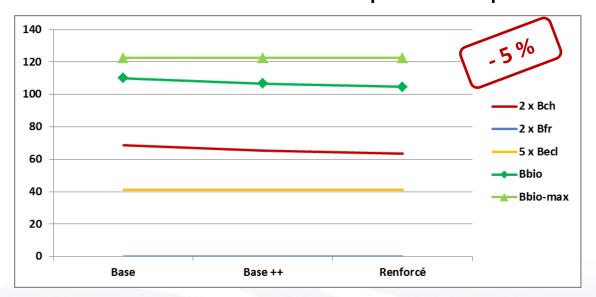
Variation de la perméabilité à l'air

JCE Lorraine 26 Novembre 2013


ETUDES PARAMÉTRIQUES

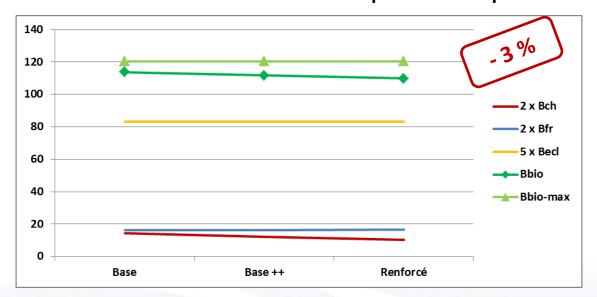
RESIDENTIEL COLLECTIF

Variation du niveau de traitement des ponts thermiques


ETUDES PARAMÉTRIQUES

TERTIAIRE DE BUREAUX

Variation du niveau de traitement des ponts thermiques


ETUDES PARAMÉTRIQUES

AUTRE TERTIAIRE (EHPAD)

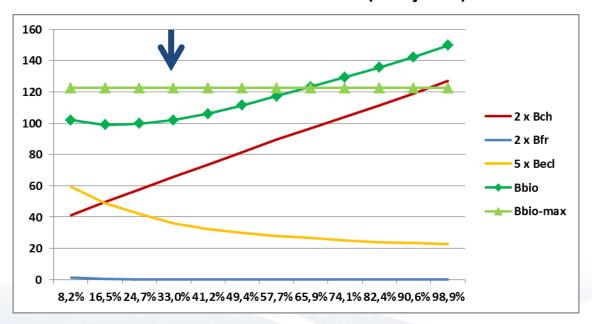
Variation du niveau de traitement des ponts thermiques

ETUDES PARAMÉTRIQUES

RESIDENTIEL COLLECTIF

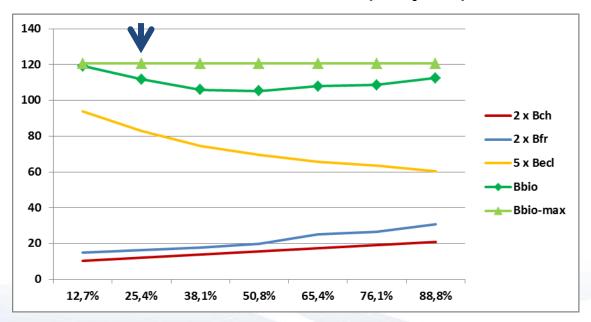
Variation de la surface de baies (% façades)

JCE Lorraine 26 Novembre 2013


ETUDES PARAMÉTRIQUES

TERTIAIRE DE BUREAUX

Variation de la surface de baies (% façades)


JCE Lorraine 26 Novembre 2013

ETUDES PARAMÉTRIQUES

AUTRE TERTIAIRE (EHPAD)

Variation de la surface de baies (% façades)

JCE Lorraine 26 Novembre 2013

Identification des facteurs dimensionnants

Compacité Inertie Niveau d'isolation des parois

RÉSIDENTIEL

Etanchéité à l'air Traitement des ponts thermiques Surface de baies

Exigences de moyens

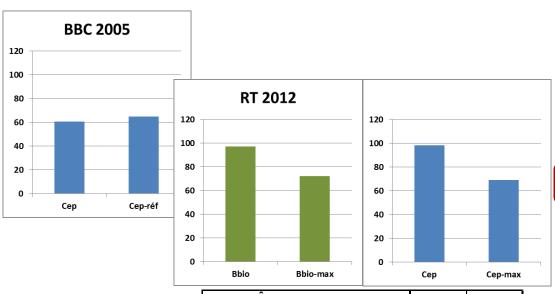
TERTIAIRE DE BUREAUX

Etanchéité à l'air Surface de baies Accès à l'éclairage naturel

AUTRE TERTIAIRE (EHPAD)

Accès à l'éclairage naturel Distribution intérieure

Variations moins prononcées

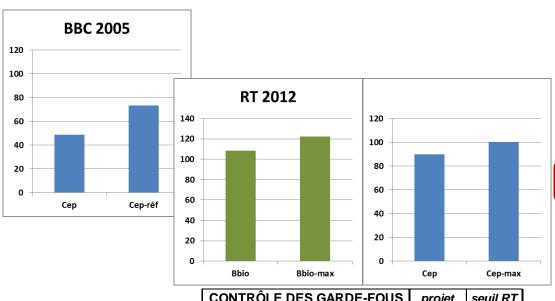

BBC 2005 vs RT 2012?

BBC 2005 vs RT 2012

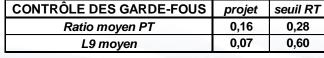
RESIDENTIEL COLLECTIF

Bbio non conforme Cep non conforme Garde-fous non conformes

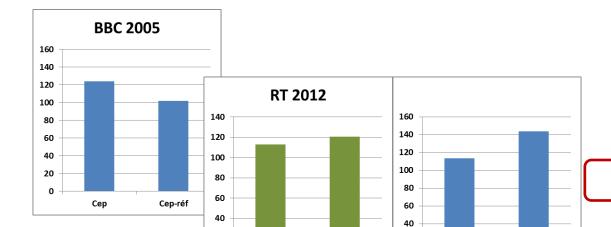
BBC 2005 RT 2012


CONTRÔLE DES GARDE-FOUS	projet	seuil RT
Ratio de surface vitrages / SHAB	19%	17%
Ratio moyen PT	0,36	0,28
L9 moyen	0,99	0,60

BBC 2005 vs RT 2012


TERTIAIRE DE BUREAUX

Bbio conforme Cep conforme Garde-fous conformes


BBC 2005 → RT 2012

BBC 2005 vs RT 2012

AUTRE TERTIAIRE (EHPAD)

20

Bbio

 CONTRÔLE DES GARDE-FOUS
 projet
 seuil RT

 Ratio moyen PT
 0,28
 0,28

 L9 moyen
 0,21
 0,60

Bbio-max

20

Bbio conforme
Cep conforme
Garde-fous conformes

RT 2012 BBC 2005

JCE Lorraine 26 Novembre 2013

Сер

Cep-max

En conclusion

CE QU'IL FAUT EN RETENIR:

Il n'y a pas réellement d'équivalence entre BBC 2005 et RT 2012.

La RT 2012 nous impose de penser d'abord conception bioclimatique avant de penser aux systèmes.

En RT 2012, il est plus difficile de rattraper les « erreurs » de conception grâce aux systèmes.

On identifie quelques leviers mais...

IL N'Y A PAS DE FORMULE MAGIQUE!

MERCI DE VOTRE ATTENTION

Questions / Réponses

RT 2012 SAISIE DES DONNEES DANS LES LOGICIELS

Pascale LAIRE

CONSTATS des logiciels RT 2012

 PLUS DE DONNÉES D'ENTRÉES POUR PLUS DE PRECISIONS DANS LES CALCULS

Niveaux de détails demandés renforcés

INTEGRATION DES SOLUTIONS INNOVANTES

Limiter le recours aux titres V

CONSTATS des logiciels RT 2012

 RENSEIGNEMENT DE L'EQUIPEMENT DANS SON ENVIRONNEMENT

Les caractéristiques techniques des produits ne sont pas les seules variables à optimiser

 LES RESULTATS DE CONSOMMATION RESTENT THEORIQUES

Les logiciels RT considèrent que les équipements et les systèmes fonctionnent dans des conditions optimales

MISE EN AVANT DES PRODUITS CERTIFIES

EXTRAIT METHODE DE CALCUL Th-BCE 2012

Valeurs certifiées :

« saisie directe de la valeur certifiée par un organisme indépendant accrédité selon la norme NF EN 45011** par le COFRAC ou tout autre organisme de certification (...) »

** la norme est liée aux produits concernés, ici les chaudières

EXTRAIT METHODE DE CALCUL Th-BCE 2012

Valeurs justifiée :

« saisie de la valeur justifiée diminuée de 10% par un essai réalisé par un organisme indépendant et accrédité selon la norme NF EN ISO/CEI 17025** par le COFRAC ou tout autre organisme de certification (...) »

** la norme est liée aux produits concernés, ici les chaudières

VALEUR JUSTIFIEE PAR LE PV D'ESSAIS -10%

EXTRAIT METHODE DE CALCUL Th-BCE 2012

Valeurs déclarée :

Exemple: rendement des chaudières

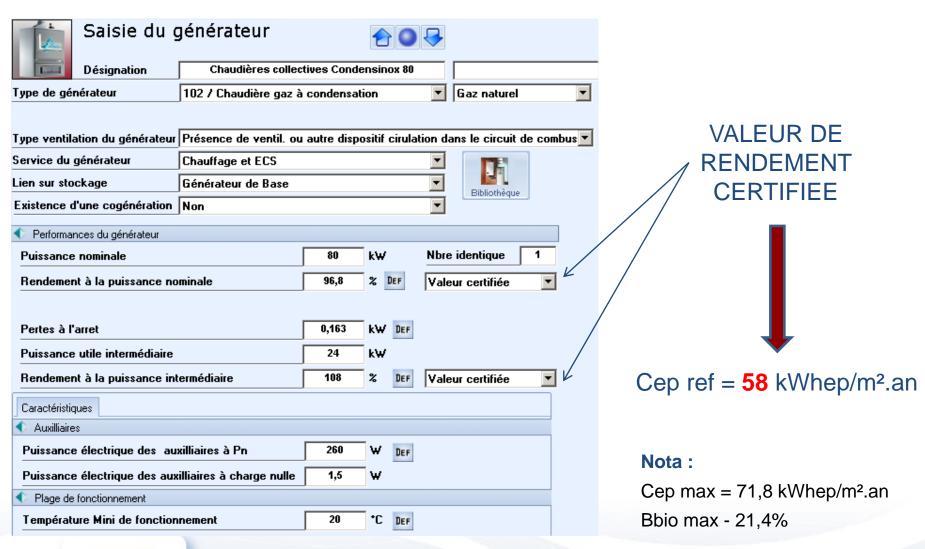
- Rpn = Min (0,8xRpn déclaré, Rpn utile max = 90%)
- Rpint = Min (0,8xRpint déclaré, Rpint utile max = 93%)

VALEUR DECLAREE PAR LE FABRICANT -20%

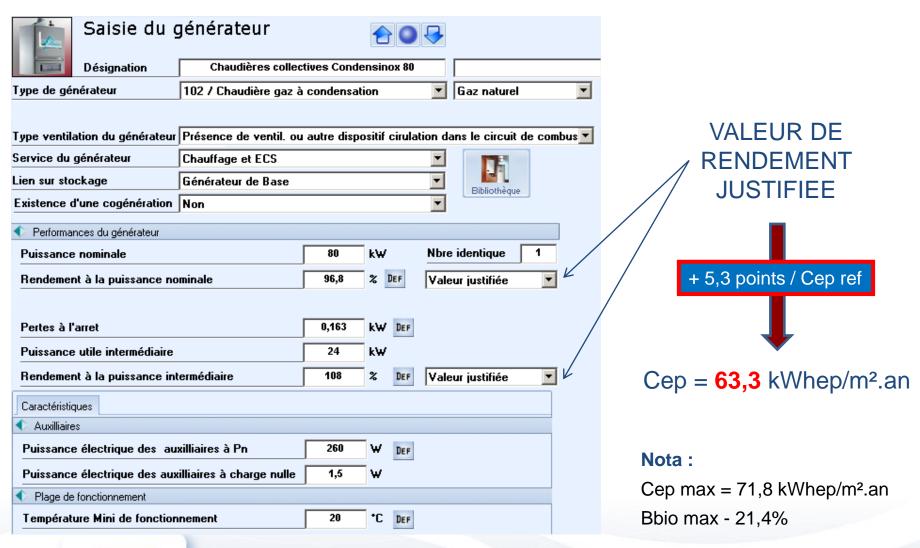
EXTRAIT METHODE DE CALCUL Th-BCE 2012

Valeurs par défaut

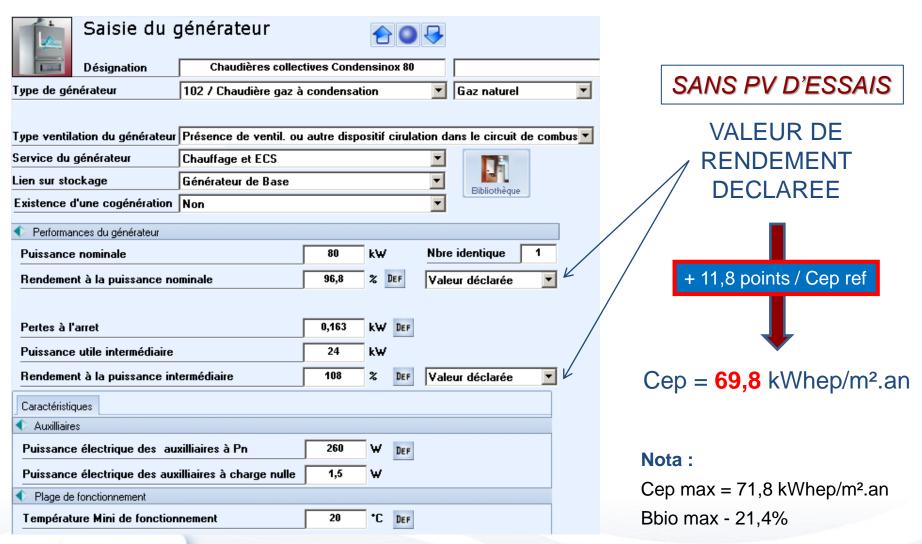
VALEUR SEUIL calculée en fonction de la puissance du générateur, et directement intégrée dans le moteur de calcul

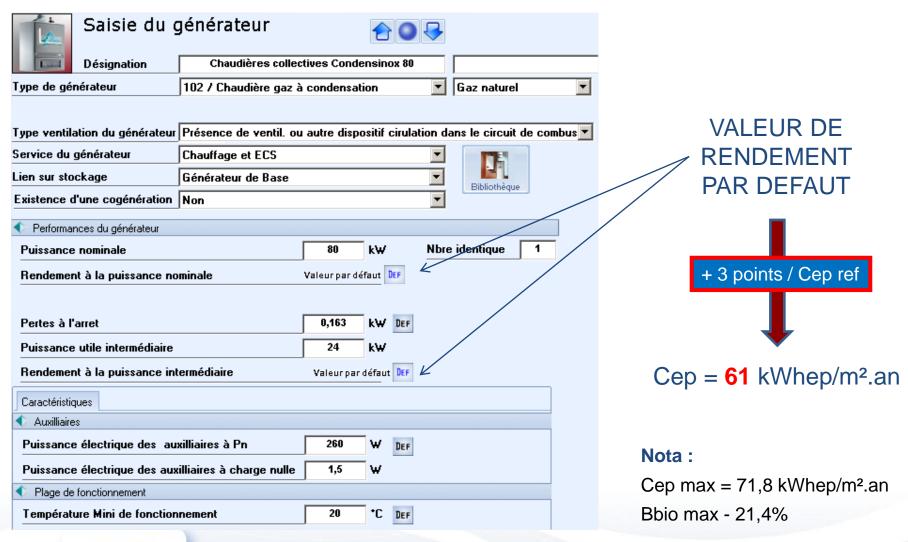

Exemple: rendement des chaudières condensation

- Rpn = A + B . Log Pn (kW)
 - → de 91 à 93,6% (de 1 à 400 kW et >)
- Rpint = C + D . Log Pn (kW)
 - → de 97 à 99,6% (de 1 à 400 kW et >)



Résultats supérieurs aux valeurs déclarées voire justifiées !!!

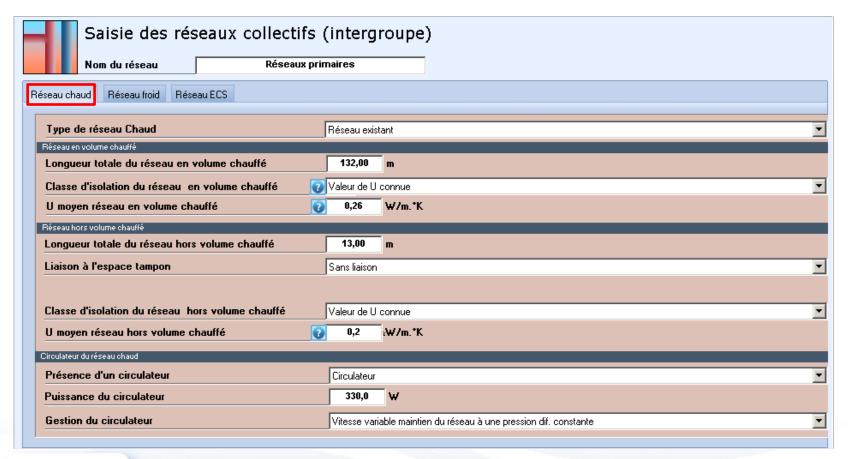




IMPACTS DE LA CERTIFICATION DES PRODUITS

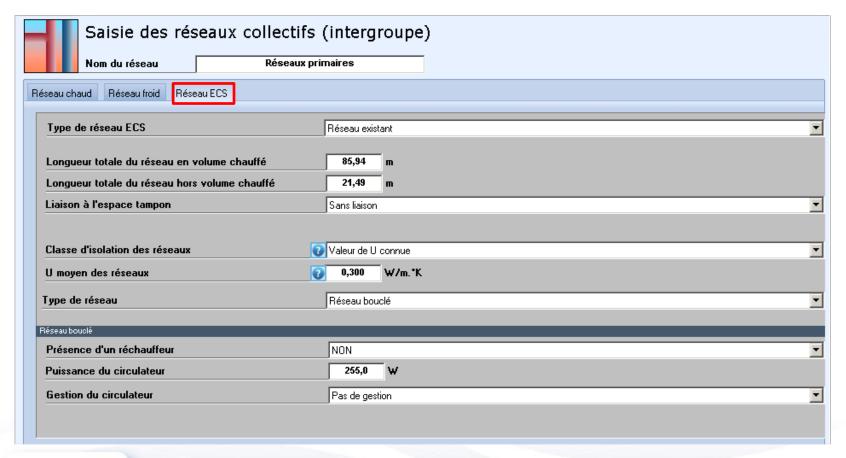
- DES CONSEQUENCES FORTES SUR LE RESULTAT DES CALCULS
- DES EXIGENCES DE VERIFICATION DE LA PART DES ORGANISMES CERTIFICATEURS (PROMOTELEC, CERQUAL)

PV D'ESSAIS CERTIFIES DEMANDES

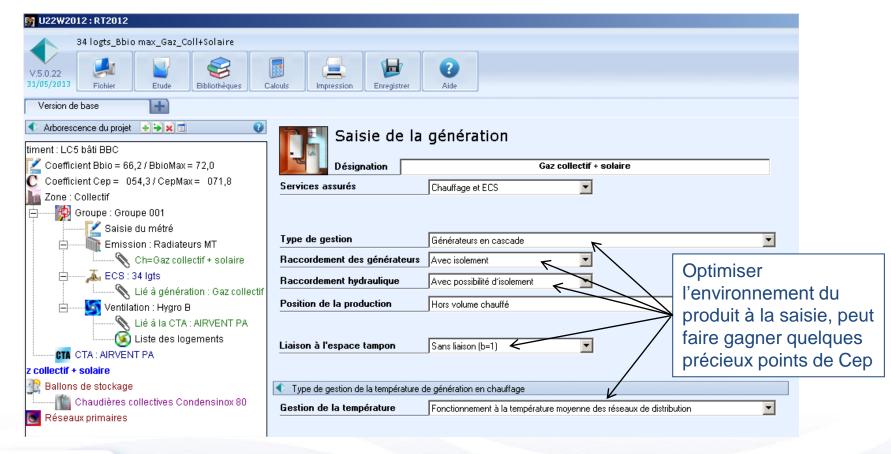

IMPACTS DE LA CERTIFICATION DES PRODUITS

- LES PRINCIPAUX PRODUITS CONCERNES :
 - Chaudières (rendements)
 - Ballons ECS (constante de refroidissement)
 - Pompes à chaleur (COP)
 - Ventilation Double Flux (rendement échangeur)
 - •

PRISE EN COMPTE DE L'ENVIRONNEMENT DU PRODUIT

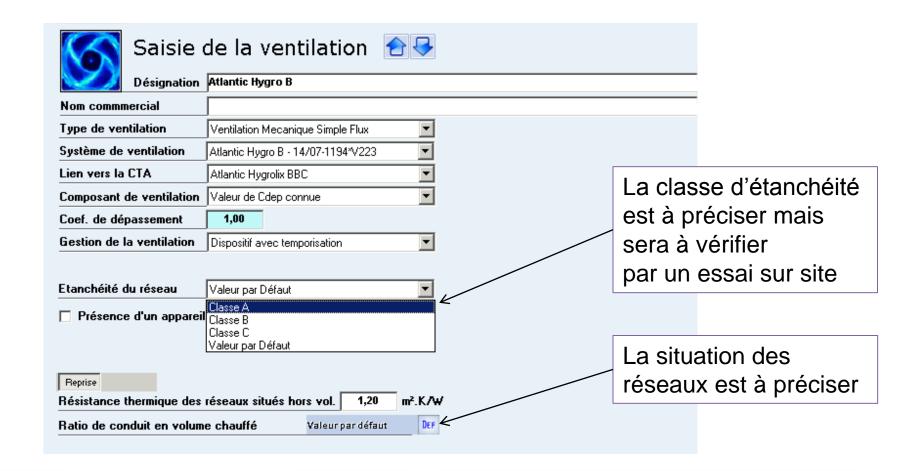

RÉSEAUX PRIMAIRES CHAUFFAGE COLLECTIF

PRISE EN COMPTE DE L'ENVIRONNEMENT DU PRODUIT


RÉSEAUX PRIMAIRES ECS COLLECTIVE

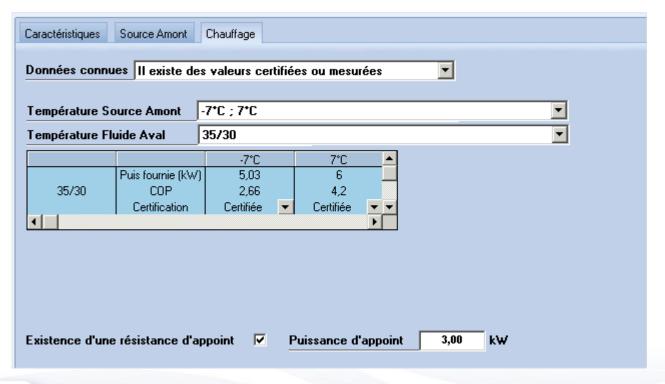
PRISE EN COMPTE DE L'ENVIRONNEMENT DU PRODUIT

SAISIE DE LA GÉNÉRATION



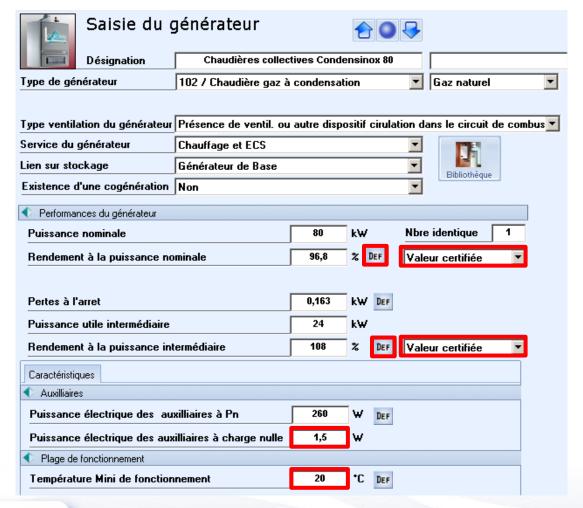
QUELQUES NOUVELLES VALEURS A RENSEIGNER

- EN VENTILATION :
 - · Prise en compte de la place des réseaux dans le volume chauffé
 - Perméabilité à confirmer par des essais sur sites


EN VENTILATION

QUELQUES NOUVELLES VALEURS A RENSEIGNER

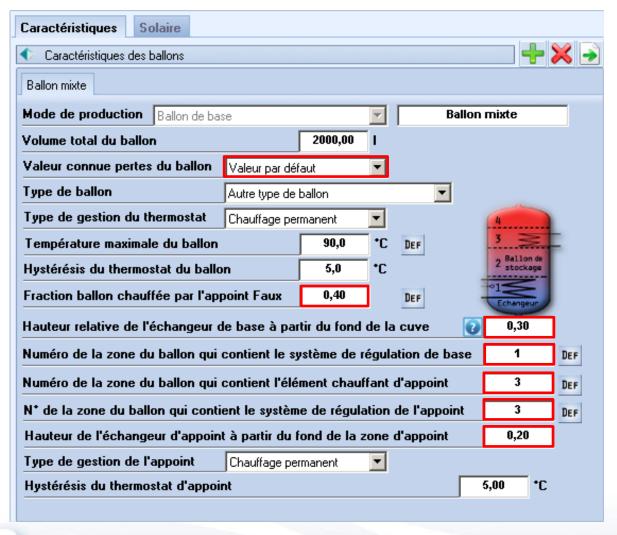
- EN POMPE A CHALEUR
 - → Caractéristiques à saisir pour différents régimes de température



QUELQUES NOUVELLES VALEURS A RENSEIGNER

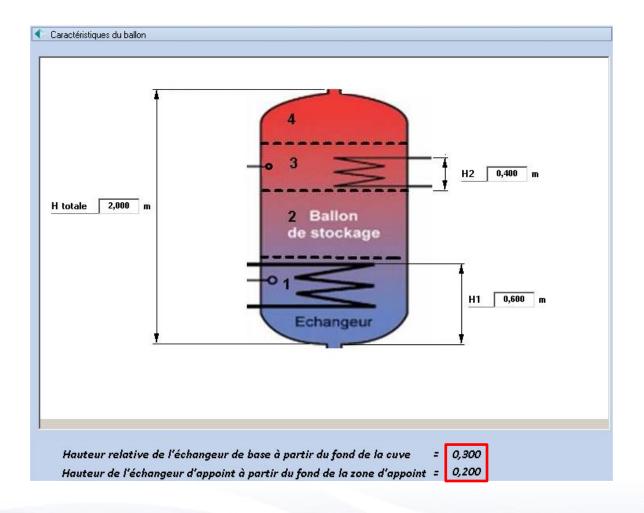
- EN CHAUDIERE :
 - Rendement Certifié / Justifié / Déclaré / par Défaut
 - Puissance électrique des auxiliaires à charge nulle
 - Température Mini de fonctionnement

EN CHAUDIERE



QUELQUES NOUVELLES VALEURS A RENSEIGNER

- EN EAU CHAUDE SANITAIRE :
 - Constante de refroidissement Certifiée/Justifiée/par Défaut
 - Position et hauteur des échangeurs/résistances du ballon

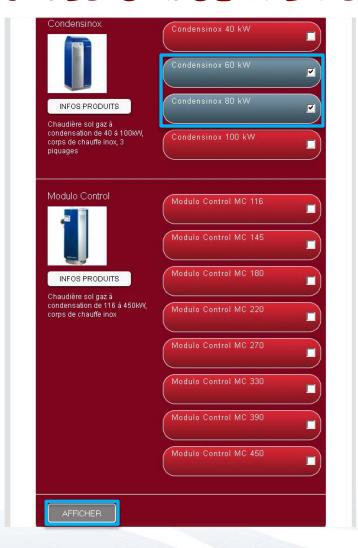


EN EAU CHAUDE SANITAIRE :

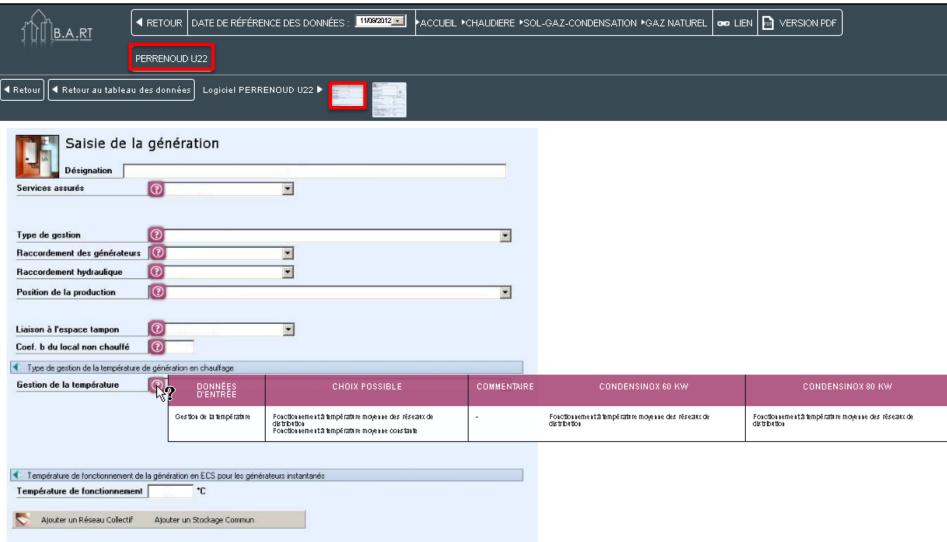
EN EAU CHAUDE SANITAIRE :

LES LIMITES DE L'OUTIL

- APPLICATION RESIDENTIELLE INIDIVIDUELLE BIEN MAITRISEE
- MAIS DES LIMITES POUR LES APPLICATIONS RESIDENTIELLES COLLECTIVES ET TERTIAIRES
 - Echangeurs à plaques
 - Accumulateur Gaz + Stockage supplémentaire
 - Solaire avec plusieurs ballons



- DES OUTILS DEVELOPPES PAR LES FABRICANTS PERMETTENT
 - DE TROUVER FACILEMENT LES DONNEES, Y COMPRIS LES DONNEES CERTIFIEES
 - DE GAGNER EN Cep PAR LE BON RENSEIGNEMENT DES CARACTERISTIQUES DU PRODUIT ET DE SON ENVIRONNEMENT



RETOUR DATE DE RÉFÉRENCE DES DONNÉES : 1108/2012 ACCUEIL *CHAUDIERE *SOL-GAZ-CONDENSATION *GAZ NATUREL CON LIEN WERSION PDF									
1 88 19 19 1	PERRENOUD U22								
DÉFINITION DES DONNÉES D'ENTRÉE RT2012									
DONNÉES D'ENTRÉE	CHOIX POSSIBLE	COMMENTAIRE	UNITÉ	VALEUR PAR DEFAUT	CONDENSINOX 60 KW	CONDENSINOX 80 KW			
Modification(s) par rapport à la version antérieure :		"suivant projet" remplacé par une valeur pour base de donnée Edibatec							
ZONE : Programmation chauffage	Horloge à heure fixe Horloge à heure fixe avec contrôle d'ambiance Optimiseur	Selon équipement : - Régulation intégrée à la chaudière = Horloge à heure fixe - Régulation intégrée + centrale d'ambiance OU Régulateur RVS = Optimiseur			Voir colonne commentaire	Voir colonne commentaire			
GENERATION : Services assurés	Chauffage seul ECS seul Chauffage et ECS Refroidissement seul Chauffage et Refroidissement Chauffage, Refroidissement et ECS	Si la chaudière n'est racordée à une production d'ECS choisir "Chauffage seul"			Chauffage et ECS	Chauffage et ECS			
Type de gestion	sans priorité Générateurs en cascade Générateurs alternés	En cascade : Si présence d'un système de stockage; Cascade obligatoire. Dans le cas de plusieurs générateurs, utilisation du 2ème générateur quand la puissance du 1er est atteinte. Alterné : combinaison la mieux dimensionnées par rapport à la charge			Générateurs en cascade	Générateurs en cascade			
Raccordement des générateurs	permanent avec isolement				avec isolement	avec isolement			
Raccordement hydraulique	permanent avec possibilité d'isolement	Le raccordement est considéré comme isolé si il est possible de condamner indépendamment les différents réseaux de distribution au niveau de la génération. Les dates de début et de fin des saisons de chauffage et de refroidissement peuvent donc être différentes			avec possibilité d'isolement	avec possibilité d'isolement			
Position de la production	En volume chauffé Hors volume chauffé				Hors volume chauffé	Hors volume chauffé			
Liaison à l'espace tampon	sans liaison (b=1) Coef b connu				Coef b connu	Coef b connu			
Coef b du local non chauffé	valeur en 0 et 1	b=1 : température extérieur b=0 : température intérieure Permet de pondérer une zone tempérée Proposition : b=0,8 pour le local chaufferie			0,8	0,8			
Gestion de la température	Fonctionnement à température moyenne des réseaux de distribution Fonctionnement à température moyenne constante				Fonctionnement à température moyenne des réseaux de distribution	Fonctionnement à température moyenne des réseaux de distribution			

DONNÉES D'ENTRÉE	CHOIX POSSIBLE	COMMENTAIRE	UNITÉ	VALEUR PAR DEFAUT	CONDENSINOX 60 KW	CONDENSINOX 80 KW
GENERATEUR: Type de générateur	Chaudière gaz standard Chaudière gaz basse température Chaudière gaz à condensation				Chaudière gaz à condensation	Chaudière gaz à condensation
Type de combustible gaz	Gaz naturel GPL (butane et propane)				gaz naturel	gaz naturel
Type ventilation du générateur	Absence de ventilateur Présence de ventilateur Présence de clapet sur le conduit de fumée				Présence de ventilateur	Présence de ventilateur
Service du générateur	Chauffage seul ECS Chauffage et ECS	Si la chaudière n'est pas racordée à une production d'ECS choisir "Chauffage seul"			Chauffage et ECS	Chauffage et ECS
Existence d'une cogénération	oui non				non	non
Puissance nominale	valeur		KW		60	80
Rendement à la puissance nominale	valeur		%	92,78 (Pn:60kW)	97,4	96,8
Valeur du rendement à Pn	Valeur déclarée Valeur justifiée Valeur certifiée				Valeur certifiée	Valeur certifiée
Pertes à l'arrêt	valeur		KW	0,149 (Pn:60kW)	0,095	0,163
Puissance utile intermédiaire	valeur		kW		18	24
Rendement à la puissance intermédiaire certifié	valeur		%	98,78 (Pn:60kW)	109,2	108
Valeur du rendement à P intermédiaire	Valeur déclarée Valeur justifiée Valeur certifiée				Valeur oertifiée	Valeur certifiée
Puissance électrique des auxiliaires à Pn	valeur	Pour les chaudière à équiper de brûleur, ajouter la puissance électrique du bruleur à Pn	w	116 (Pn:60kW)	150	260
Puissance électrique des auxiliaires à Charge nulle	valeur	Pour les chaudière à équiper de brûleur, ajouter la puissance électrique du bruleur à charge nulle	W		8	1,5
température minimale de fonctionnement	valeur		"C	33	24	20
température maximale de fonctionnement	valeur		°C	-	85	85

CONCLUSION

- L'OUTIL EST PLUS OPTIMISE POUR LES SOLUTIONS RESIDENTIELLES INDIVIDUELLES
- L'OUTIL EST UN PEU PLUS LIMITÉ, LORSQU'IL S'AGIT DE SOLUTIONS RÉSIDENTIELLES COLLECTIVES ET TERTIAIRES
- IL FAUT RAISONNER EN SOLUTION GLOBALE EN INTEGRANT LE PRODUIT ET SON ENVIRONNEMENT
- LES RESULTATS DE CONSOMMATION D'ÉNERGIE OBTENUS SONT CONVENTIONNELS ...

